Genetic recombination and commitment to meiosis in Saccharomyces. 1974

R E Esposito, and M S Esposito

Diploid cells of the yeast Saccharomyces cerevisiae become committed to recombination at meiotic levels without becoming committed to the meiotic disjunction of chromosomes. These two events of the meiotic process can be separated by removing cells from a meiosis-inducing medium and returning them to a medium that promotes vegetative cell division. Cells removed at an appropriate time remain diploid, revert to mitosis, and display recombination with meiotic-like frequencies. Those removed after this time are committed to the completion of meiosis. Diploids of three conditional sporulation-deficient mutants (spo1-1, spo2-1, and spo3-1) have been examined for recombination at restrictive temperatures. All exhibit commitment to recombination without commitment to meiotic disjunction as in the wild type. Cells of spo1-1/spo1-1 do not replicate the spindle pole body for meiosis I; thus, recombination ability can be acquired by cells that do not proceed beyond this cytological stage.

UI MeSH Term Description Entries
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

R E Esposito, and M S Esposito
March 2012, Microbiology and molecular biology reviews : MMBR,
R E Esposito, and M S Esposito
June 1997, Genetics,
R E Esposito, and M S Esposito
December 1994, Proceedings of the National Academy of Sciences of the United States of America,
R E Esposito, and M S Esposito
January 2017, Methods in molecular biology (Clifton, N.J.),
R E Esposito, and M S Esposito
December 1984, Molecular and cellular biology,
Copied contents to your clipboard!