Analysis of a Bacillus subtilis proteinase mutant. 1972

R Shoer, and H P Rappaport

A Bacillus subtilis mutant having a phenotype manifesting reduced extracellular proteolytic activity was investigated. An extracellular protein was isolated and shown by fingerprint analysis to be a fragment of the wild-type enzyme. By using previously established molecular weights for the wild-type enzyme (2.9 x 10(4)) and the two polypeptide chains derived from it (1.4 x 10(4) each), with the amino acid analysis and fingerprints of both wild-type and mutant proteins, a molecular weight of 1.57 x 10(4) was assigned to the mutant protein. (32)P-diisopropylphosphate labeling of the mutant protein showed only 1 in 53 molecules to be functional. Thin-layer chromatography on Sephadex G-75 demonstrated that the active molecules were separable from the bulk of the isolated protein and had the same mobility as the wild-type enzyme. Fingerprints of tryptic digests of (32)P-diisopropylphosphate-labeled wild-type and mutant proteins showed that the labeled peptides had identical characteristics.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography

Related Publications

R Shoer, and H P Rappaport
January 1977, Acta biologica et medica Germanica,
R Shoer, and H P Rappaport
August 1946, Journal of bacteriology,
R Shoer, and H P Rappaport
August 1946, Journal of bacteriology,
R Shoer, and H P Rappaport
January 1984, Journal of bacteriology,
R Shoer, and H P Rappaport
July 1969, Molecular & general genetics : MGG,
R Shoer, and H P Rappaport
February 1982, Journal of bacteriology,
R Shoer, and H P Rappaport
January 1965, The Journal of biological chemistry,
R Shoer, and H P Rappaport
March 1968, Journal of bacteriology,
Copied contents to your clipboard!