Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. 1972

S F Vatner, and C B Higgins, and D Franklin, and E Braunwald

The effects of bilateral carotid artery occlusion (BCO) and carotid sinus nerve stimulation (CSNS) on left ventricular (LV) pressure (P), diameter (D), velocity of contraction (V), rate of change of pressure (dP/dt), and cardiac output were studied in conscious dogs instrumented with ultrasonic diameter gauges, miniature pressure gauges, and aortic electromagnetic flow transducers. The effects of BCO and CSNS were also studied after automatic blockade and were compared to similar alterations in pressure produced by norepinephrine, methoxamine, and nitroglycerin. When heart rate was maintained constant with atrial stimulation, BCO had little effect on ventricular contractility, increasing isolength systolic pressure (LV P(iso)) by 36% while isolength velocity of myocardial shortening (V(iso)) decreased by 12% and (dP/dt)/P fell by 8%. These effects could be explained largely by vasoconstriction, since elevating systolic pressure with methoxamine produced similar results, while norepinephrine increased V(iso) by 36% and (dP/dt)/P by 56%. CSNS produced directionally opposite results from BCO; it decreased P(iso) by 15%, V(iso) increased by 11%, while (dP/dt)/P remained almost constant. These effects may be explained largely by vasodilatation since reducing systolic pressure to the same level with nitroglycerin produced similar results. When peripheral vasoconstriction was minimized by phenoxybenzamine pretreatment. BCO produced a slight positive inotropic effect (P(iso) increased by 8%, V(iso) by 4%, and (dp/dt)/P by 10%), while CSNS produced a slight negative inotropic effect (P(iso) decreased by 3%, V(iso) decreased by 5%, and (dP/dt)/P by 7%).Thus, in the normal, healthy, conscious dog, the carotid sinuses exert relatively little control of the inotropic state of the left ventricle; moreover, this small inotropic action is masked by the more powerful effects on peripheral resistance.

UI MeSH Term Description Entries
D008729 Methoxamine An alpha-1 adrenergic agonist that causes prolonged peripheral VASOCONSTRICTION. Methoxamedrin,Methoxamine Hydrochloride,Metoxamine Wellcome,Vasoxin,Vasoxine,Vasoxyl,Vasylox,Hydrochloride, Methoxamine,Wellcome, Metoxamine
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002302 Cardiac Output The volume of BLOOD passing through the HEART per unit of time. It is usually expressed as liters (volume) per minute so as not to be confused with STROKE VOLUME (volume per beat). Cardiac Outputs,Output, Cardiac,Outputs, Cardiac
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D002346 Carotid Sinus The dilated portion of the common carotid artery at its bifurcation into external and internal carotids. It contains baroreceptors which, when stimulated, cause slowing of the heart, vasodilatation, and a fall in blood pressure. Sinus, Carotid

Related Publications

S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
June 1978, The Journal of clinical investigation,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
June 1968, Archives internationales de pharmacodynamie et de therapie,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
January 1996, Basic research in cardiology,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
October 1985, The American journal of physiology,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
January 1987, Heart and vessels,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
May 1971, The Journal of clinical investigation,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
January 1980, The Journal of physiology,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
February 1989, The American journal of physiology,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
January 1992, The Journal of physiology,
S F Vatner, and C B Higgins, and D Franklin, and E Braunwald
September 1989, The Journal of physiology,
Copied contents to your clipboard!