Miniature end-plate currents and potentials generated by quanta of acetylcholine in glycerol-treated toad sartorius fibres. 1972

P W Gage, and R N McBurney

1. Part of the end-plate region of glycerol-treated toad sartorius muscle fibres in a hypertonic solution was voltage-clamped using two microelectrodes. The control was adequate for recording miniature end-plate currents (m.e.p.c.s) in the vicinity of the electrodes only, at clamp potentials from - 20 to - 100 mV. At any potential, the peak amplitude of m.e.p.c.s varied widely but their mean amplitude was linearly related to clamp potential. The equilibrium potential, obtained by extrapolation, was more positive than in normal fibres.2. The growth phase of m.e.p.c.s was linear and rapid (< 0.7 msec). The decay phase was exponential. The time constant of decay of m.e.p.c.s was affected by temperature, and increased as the membrane potential was increased. At 20 degrees C, the time constant of decay ranged from 0.8 to 3.8 msec at membrane potentials from - 20 to - 100 mV.3. The mean conductance change caused by a quantum of acetylcholine was 5.5 x 10(-8) mho.4. Voltage responses to rectangular current injections through one electrode were recorded with three other electrodes in the end-plate region of glycerol-treated fibres. Miniature end-plate potentials (m.e.p.p.s) were also recorded with the same four electrodes.5. The decrement of both DC voltage responses and m.e.p.p.s along a fibre was exponential but the m.e.p.p. ;space constant' was significantly shorter than the DC space constant.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002024 Bufo marinus A species of the true toads, Bufonidae, becoming fairly common in the southern United States and almost pantropical. The secretions from the skin glands of this species are very toxic to animals. Rhinella marina,Toad, Giant,Toad, Marine,Giant Toad,Giant Toads,Marine Toad,Marine Toads,Toads, Giant,Toads, Marine
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D005990 Glycerol A trihydroxy sugar alcohol that is an intermediate in carbohydrate and lipid metabolism. It is used as a solvent, emollient, pharmaceutical agent, or sweetening agent. 1,2,3-Propanetriol,Glycerin,1,2,3-Trihydroxypropane,Glycerine
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

P W Gage, and R N McBurney
January 1990, Neirofiziologiia = Neurophysiology,
P W Gage, and R N McBurney
January 1988, Neirofiziologiia = Neurophysiology,
P W Gage, and R N McBurney
August 1987, Sheng li xue bao : [Acta physiologica Sinica],
P W Gage, and R N McBurney
March 1997, Pflugers Archiv : European journal of physiology,
P W Gage, and R N McBurney
April 1978, The Journal of physiology,
P W Gage, and R N McBurney
July 1972, Journal of theoretical biology,
P W Gage, and R N McBurney
April 1968, Nature,
P W Gage, and R N McBurney
June 1984, Pflugers Archiv : European journal of physiology,
P W Gage, and R N McBurney
January 1984, Experimental neurology,
Copied contents to your clipboard!