Bacteriophage T4 head maturation: release of progeny DNA from the host cell membrane. 1973

P J Siegel, and M Schaechter

We have presented a new approach to studying bacteriophage T4 head maturation. Using a modified M-band technique, we have shown that progeny deoxyribonucleic acid (DNA) was synthesized on the host cell membrane throughout infection. This DNA was released from the membrane later in infection as the result of formation of the phage head; detachment of the DNA required the action of gene products 20, 21, 22, 23, 24, 31, 16, 17 and 49, known to be necessary for normal head formation. Gene products 2, 4, 50, 64, 65, 13 and 14, also involved in head morphogenesis were not required to detach progeny DNA from the membrane; the presence of the phage tail and tail fibers also was not required. DNA was released in the form of immature heads and initially was sensitive to deoxyribonuclease (DNase). Conversion to DNase resistance followed rapidly. The amount of phage precursors present at the time of DNA synthesis determined the time of onset and detachment rate of DNA from the M band as well as the kinetics by which the detached DNA become DNase resistant.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008242 Lysogeny The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium. Integration, Prophage,Prophage Integration,Integrations, Prophage,Prophage Integrations
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli

Related Publications

P J Siegel, and M Schaechter
November 1973, Journal of molecular biology,
P J Siegel, and M Schaechter
October 1974, Journal of molecular biology,
P J Siegel, and M Schaechter
February 1976, Journal of virology,
P J Siegel, and M Schaechter
November 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
P J Siegel, and M Schaechter
May 1974, Journal of molecular biology,
P J Siegel, and M Schaechter
August 1973, Journal of virology,
P J Siegel, and M Schaechter
November 1973, Journal of molecular biology,
Copied contents to your clipboard!