Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. 1973

J A Hoch, and J L Mathews

Genetic analysis by PBS-1 transduction and transformation of a large group of pleiotropic negative sporulation mutants has shown that mutations of this phenotype may be located in five genetically distinct regions. The first group of mutant sites, spoA mutations, is located in the terminal region of the chromosome and linked to the lys-1 marker by PBS-1 transduction. The second group, spoB mutations, is located between phe-1 and the attachment site for the lysogenic bacteriophage varphi 105. Fine structure analysis of the mutant sites within the spoB locus has been accomplished. A third location for mutants of this phenotype, spoE mutants, was found between the metC3 and ura-1 markers. Two mutants were found at this site and both were capable of sporulation, in contrast to the rest of the pleiotropic sporulation mutants. A fourth chromosomal site, spoH mutations, was found near the ribosomal and RNA polymerase loci. A large group of mutant sites, spoF mutations, was found to be linked to each other by recombination index analysis in transformation but unlinked to any of the known auxotrophic mutations comprising the chromosomal map. All mutants analyzed showing a pleiotropic negative phenotype were found to map within one of these five regions. Interspecific transformation with Bacillus amyloliquefaciens as donor has shown that all of the pleiotropic negative sporulation mutations are conserved relative to a selected group of auxotrophic markers. The degree of conservation in decreasing order is: spoH > spoF = spoB > spoA.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004267 DNA Viruses Viruses whose nucleic acid is DNA. DNA Virus,Virus, DNA,Viruses, DNA
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001435 Bacteriophages Viruses whose hosts are bacterial cells. Phages,Bacteriophage,Phage
D014161 Transduction, Genetic The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE. Genetic Transduction,Genetic Transductions,Transductions, Genetic
D014170 Transformation, Genetic Change brought about to an organisms genetic composition by unidirectional transfer (TRANSFECTION; TRANSDUCTION, GENETIC; CONJUGATION, GENETIC, etc.) and incorporation of foreign DNA into prokaryotic or eukaryotic cells by recombination of part or all of that DNA into the cell's genome. Genetic Transformation,Genetic Transformations,Transformations, Genetic

Related Publications

J A Hoch, and J L Mathews
January 1978, Annales de microbiologie,
J A Hoch, and J L Mathews
September 1973, Journal of bacteriology,
J A Hoch, and J L Mathews
March 1971, Journal of bacteriology,
J A Hoch, and J L Mathews
January 1972, Molecular & general genetics : MGG,
J A Hoch, and J L Mathews
August 1970, Journal of bacteriology,
J A Hoch, and J L Mathews
July 1969, Canadian journal of microbiology,
J A Hoch, and J L Mathews
September 1974, Journal of bacteriology,
J A Hoch, and J L Mathews
February 1967, Science (New York, N.Y.),
Copied contents to your clipboard!