Participation of slow inward current in the Purkinje fiber action potential overshoot. 1979

L Mary-Rabine, and B F Hoffman, and M R Rosen

We used microelectrode techniques to study the relationship of canine Purkinje fiber membrane potential and the action potential (AP) overshoot. At the maximum diastolic potential, -93.0 +/- 0.5 (SE) mV, AP overshoot was +37.7 +/- 0.4 mV. There was a range of membrane potentials (MP) less negative than the maximum diastolic potential from which action potentials were elicited with an overshoot greater than the control. Starting at an MP of less than -78.7 +/- 0.4 mV, AP overshoot was less than control. A maximum overshoot of +40.2 +/- 0.4 mV occurred at an MP of -85.4 +/- 0.4 mV. The relationship of the maximum upstroke velocity (Vmax) of phase 0 depolarization to MP was sigmoidal. Peak Vmax, 497 +/- 13 V/s, occurred at MP greater than or equal to -89.3 +/- 0.5 mV. The increase in overshoot was enhanced as perfusate [Ca2+] increased and decreased as [Ca2+] decreased. Slow-channel blocking agents and tetrodotoxin (TTX) depressed the peak of the curve relating overshoot to MP. TTX also decreased Vmax. The effect of TTX on overshoot but not on Vmax was reversed with Ca2+, 8.1 mM. The increase in overshoot for action potentials initiated during the terminal part of phase 3 was due to a slow, delayed component of the upstroke and appears to result from the slow inward current.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002219 Carbamates Derivatives of carbamic acid, H2NC( Carbamate,Aminoformic Acids,Carbamic Acids,Acids, Aminoformic,Acids, Carbamic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013779 Tetrodotoxin An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction. Fugu Toxin,Tarichatoxin,Tetradotoxin,Toxin, Fugu

Related Publications

L Mary-Rabine, and B F Hoffman, and M R Rosen
January 1971, Pflugers Archiv : European journal of physiology,
L Mary-Rabine, and B F Hoffman, and M R Rosen
January 1993, Yao xue xue bao = Acta pharmaceutica Sinica,
L Mary-Rabine, and B F Hoffman, and M R Rosen
March 1975, The Journal of general physiology,
L Mary-Rabine, and B F Hoffman, and M R Rosen
December 1976, The Journal of physiology,
L Mary-Rabine, and B F Hoffman, and M R Rosen
March 1986, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
L Mary-Rabine, and B F Hoffman, and M R Rosen
January 1969, Pflugers Archiv : European journal of physiology,
L Mary-Rabine, and B F Hoffman, and M R Rosen
September 1967, The Journal of physiology,
L Mary-Rabine, and B F Hoffman, and M R Rosen
April 1982, American heart journal,
L Mary-Rabine, and B F Hoffman, and M R Rosen
January 1985, Journal de physiologie,
L Mary-Rabine, and B F Hoffman, and M R Rosen
October 1977, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!