Subunit structure and peptide mapping of junctional and extrajunctional acetylcholine receptors from rat muscle. 1979

N M Nathanson, and Z W Hall

We have purified the junctional acetylcholine receptor from normal rat skeletal muscle and compared its structure with that of the extrajunctional receptor from denervated muscle. The two receptors from leg muscle were distinguished by isoelectric focusing and by reaction with sera from patients with myasthenia gravis. The junctional form of the acetylcholine receptor was purified from normal leg muscle by affinity chromatography on concanavalin A/Sepharose and cobrotoxin/Sepharose followed by sucrose gradient centrifugation. Analysis of radioiodinated receptor by polyacrylamide gel electrophoresis in sodium dodecyl sulfate indicated that the subunit structure of the junctional receptor was similar to that previously determined for the extra-junctional form (Froehner, S. C., et al. (1977) J. Biol. Chem. 252, 8589-8596), with major polypeptides, whose apparent molecular weights in 9% polyacrylamide gels were 45 000 and 51 000. In addition, several minor polypeptides were found. When the two receptors were labeled with different isotopes of iodine and run together on a sodium dodecyl sulfate gel, the subunits of one receptor could not be resolved from those of the other. As seen earlier with the extrajunctional form, the affinity alkylating reagent [3H]MBTA labeled the 45 000- and 49 000-dalton polypeptides of the junctional receptor. Peptide mapping showed that the two MBTA binding subunits are structurally related, although they are unrelated to the other polypeptides, and that the 45 000- and 51 000-dalton polypeptides of the junctional receptor were indistinguishable from those of the extrajunctional receptor. In addition, peptide mapping of the four subunits of acetylcholine receptor isolated from Torpedo californica electric organ showed that these four polypeptides appear to be structurally unrelated.

UI MeSH Term Description Entries
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine

Related Publications

N M Nathanson, and Z W Hall
May 1980, Canadian journal of physiology and pharmacology,
N M Nathanson, and Z W Hall
July 1979, Proceedings of the National Academy of Sciences of the United States of America,
N M Nathanson, and Z W Hall
April 1991, Acta neurologica Scandinavica,
Copied contents to your clipboard!