[Effect of dibromothymoquinone on photosynthetic electron transport]. 1979

V V Roshchina

The effect of dibromothymoquinone on photosynthetic electron transport in pea dependent on concentration was studied. Dibromothymoquinone inhibited general electron transport from water to NADP+ in isolated chloroplasts and ethiochloroplasts and the electron transfer via plastoquinone and cytochrome f in the leaves and isolated plastids. At all concentrations studied dibromothymoquinone significantly affected the absorption changes at 590 nm in the ethiochloroplasts associated with plastocyanine photoreactions. Possible location of electron carriers in the photosynthetic electron transport chain is discussed.

UI MeSH Term Description Entries
D010788 Photosynthesis The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001) Calvin Cycle,Calvin-Benson Cycle,Calvin-Benson-Bassham Cycle,Carbon Fixation, Photosynthetic,Reductive Pentose Phosphate Cycle,Dark Reactions of Photosynthesis,Calvin Benson Bassham Cycle,Calvin Benson Cycle,Cycle, Calvin,Cycle, Calvin-Benson,Cycle, Calvin-Benson-Bassham,Photosynthesis Dark Reaction,Photosynthesis Dark Reactions,Photosynthetic Carbon Fixation
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011809 Quinones Hydrocarbon rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D003991 Dibromothymoquinone At low concentrations, this compound inhibits reduction of conventional hydrophilic electron acceptors, probably acting as a plastoquinone antagonist. At higher concentrations, it acts as an electron acceptor, intercepting electrons either before or at the site of its inhibitory activity. 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone,2,5 Dibromo 3 methyl 6 isopropyl p benzoquinone
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.

Related Publications

V V Roshchina
August 1978, Archives of biochemistry and biophysics,
V V Roshchina
September 1980, Archives of biochemistry and biophysics,
V V Roshchina
January 1976, Zeitschrift fur Naturforschung. Section C, Biosciences,
V V Roshchina
April 2018, Journal of photochemistry and photobiology. B, Biology,
V V Roshchina
August 2003, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!