Responses to DL-ibotenic acid at locust glutamatergic neuromuscular junctions. 1979

R B Clark, and K A Gration, and P N Usherwood

1 The responses of excitatory junctions on locust skeletal muscle fibres to iontophoretically applied L-glutamic acid and DL-ibotenic acid, a rigidly extended analogue of glutamate, were recorded by means of intracellular microelectrodes.2 Iontophoresis of L-glutamate to junctional sites produced transient depolarizations. Ibotenate applied iontophoretically to these sites usually evoked small hyperpolarizations which probably resulted from the activation of glutamate H-receptors on the extrajunctional membrane surrounding the junctions. However, at a minority ( approximately 20%) of junctions, ibotenate iontophoresis evoked transient depolarizations.3 Iontophoretically applied glutamate desensitized the ibotenate receptors, and vice versa. In experiments performed at junctional sites at which ibotenate depolarizations were absent, ibotenate had no effect on the responses to glutamate.4 Glutamate and ibotenate junctional currents had similar reversal potentials, measured under voltage-clamp, suggesting that the ionic bases for these currents are identical.5 It is proposed that the excitation caused by ibotenate results from the activation of receptors for extended L-glutamate and that these receptors co-exist on the post-junctional membranes of locust excitatory nerve-muscle synapses with ibotenate-insensitive glutamate receptors activated by glutamate in partially folded conformation.

UI MeSH Term Description Entries
D007051 Ibotenic Acid A neurotoxic isoxazole (similar to KAINIC ACID and MUSCIMOL) found in AMANITA mushrooms. It causes motor depression, ataxia, and changes in mood, perceptions and feelings, and is a potent excitatory amino acid agonist. Acid, Ibotenic
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010080 Oxazoles Five-membered heterocyclic ring structures containing an oxygen in the 1-position and a nitrogen in the 3-position, in distinction from ISOXAZOLES where they are at the 1,2 positions. Oxazole,1,3-Oxazolium-5-Oxides,Munchnones,1,3 Oxazolium 5 Oxides
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006110 Grasshoppers Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid. Acrididae,Locusts,Romaleidae,Grasshopper,Locust
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

R B Clark, and K A Gration, and P N Usherwood
April 2004, Neuroscience research,
R B Clark, and K A Gration, and P N Usherwood
April 1980, Physiological reviews,
R B Clark, and K A Gration, and P N Usherwood
June 1973, Neurosciences Research Program bulletin,
R B Clark, and K A Gration, and P N Usherwood
June 1974, The Journal of experimental biology,
R B Clark, and K A Gration, and P N Usherwood
September 1980, Brain research,
R B Clark, and K A Gration, and P N Usherwood
March 1991, Proceedings of the National Academy of Sciences of the United States of America,
R B Clark, and K A Gration, and P N Usherwood
January 2002, Muscle & nerve. Supplement,
R B Clark, and K A Gration, and P N Usherwood
April 1985, Virus research,
R B Clark, and K A Gration, and P N Usherwood
October 1958, The Journal of physiology,
Copied contents to your clipboard!