Assay and properties of dititonin-activated bilirubin uridine diphosphate glucuronyltransferase from rat liver. 1972

K P Heirwegh, and M Van de Vijver, and J Fevery

1. The bilirubin UDP-glucuronyltransferase assay described by Van Roy & Heirwegh (1968) has been improved. 2. Extraction of final azo-derivatives is rendered more simple and efficient by thorough emulsification and by cooling. 3. Pretreatment of homogenates and cell fractions with digitonin increases the sensitivity of the assays and gives less variable results than those with untreated preparations. The activation procedure is flexible. 4. Blank values (obtained from incubation mixtures from which activating bivalent metal ion and UDP-glucuronic acid were omitted) are low. No endogenous conjugate formation could be detected except with untreated, fresh liver homogenates. Control incubation mixtures containing the latter preparations are preferably kept at 0 degrees C. 5. With activated microsomal preparations, rates of breakdown of UDP-glucuronic acid (as monitored by release of P(i)) were low. Little if any increase in enzyme activity was found when UDP-N-acetylglucosamine was included in the incubation mixtures. 6. Slight deviation from Michaelis-Menten kinetics with respect to bilirubin observed at low substrate concentrations is probably related to the use of binding protein in the assay mixtures. Michaelis-Menten kinetics were followed with respect to UDP-glucuronic acid. Part of the enzyme in microsomal preparations from rat liver functioned independently of added bivalent metal ions. Mn(2+) was slightly more, and Ca(2+) somewhat less, stimulatory than Mg(2+). The Mg(2+)-dependent fraction showed Michaelis-Menten kinetics with respect to the added Mg(2+). 7. The enzyme activities found were higher than values reported in the literature for untreated or purified preparations from rat liver. They were above reported values of the maximal biliary excretion rate of bilirubin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D003979 Diazonium Compounds Azo compounds consisting of an aryl or alkyl group that is joined through two nitrogen atoms to an anion (R-N2+X-). Compounds, Diazonium
D004072 Digitonin A glycoside obtained from Digitalis purpurea; the aglycone is digitogenin which is bound to five sugars. Digitonin solubilizes lipids, especially in membranes and is used as a tool in cellular biochemistry, and reagent for precipitating cholesterol. It has no cardiac effects. Digitin

Related Publications

K P Heirwegh, and M Van de Vijver, and J Fevery
December 1972, Biochimica et biophysica acta,
K P Heirwegh, and M Van de Vijver, and J Fevery
November 1971, The Biochemical journal,
K P Heirwegh, and M Van de Vijver, and J Fevery
January 1976, Biochemical Society transactions,
K P Heirwegh, and M Van de Vijver, and J Fevery
June 1978, The Biochemical journal,
K P Heirwegh, and M Van de Vijver, and J Fevery
January 1971, Experientia,
K P Heirwegh, and M Van de Vijver, and J Fevery
January 1980, Uspekhi sovremennoi biologii,
K P Heirwegh, and M Van de Vijver, and J Fevery
December 1971, The Biochemical journal,
K P Heirwegh, and M Van de Vijver, and J Fevery
March 1977, The Biochemical journal,
K P Heirwegh, and M Van de Vijver, and J Fevery
October 1970, Science (New York, N.Y.),
Copied contents to your clipboard!