Morphological identification and biochemical characterization of isolated brain cell nuclei from the developing rat cerebellum. 1979

I S Zagon, and P J McLaughlin

Cell nuclei from developing rat cerebellum were isolated and the various types of nuclei were characterized and quantified. Nuclear pellets appeared to be both quantitatively and qualitatively representative of the entire cerebellum, and of sufficient purity to perform biochemical studies as well as morphological comparison with histological sections. Isolated nuclei were classified into 6 groups based on nuclear size and shape, heterochromatin aggregations, and nucleoplasmic density. The total population of cerebellar cells primarily consisted of two types of nuclei after day 10. One group of nuclei, resembling those of internal granule neurons or external germinal cells, contributed at least 70% of the total isolated cell nuclei from day 1 to day 90, whereas another nuclear group that was identified as dark oligodendrocytes constituted 8-9% of the total population on days 45 and 90. Nuclear DNA, RNA, and protein content of the cerebellum also were determined throughout postnatal development. DNA concentration markedly declined after day 15, while the RNA/DNA ratio increased until day 3 and remained constant to day 90. The nuclear protein/DNA ratio increased from birth to day 3, decreased to its lowest value on day 10, and increased to day 90. Utilizing DNA values, the total cell population as well as contributions of different cell types were calculated. At birth the cerebellum was estimated to contain 5.9 million cells, increasing to 94 million by day 21. By day 90, 107 million cells were present, of which 8.6 million oligodendrocytes and 93.6 million internal granule cells were estimated.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females

Related Publications

I S Zagon, and P J McLaughlin
November 1994, NeuroImage,
I S Zagon, and P J McLaughlin
March 1979, Journal of neurochemistry,
I S Zagon, and P J McLaughlin
January 1984, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
I S Zagon, and P J McLaughlin
January 1980, Acta physiologica Scandinavica. Supplementum,
I S Zagon, and P J McLaughlin
January 1977, Methods in cell biology,
I S Zagon, and P J McLaughlin
March 1984, Revista espanola de fisiologia,
I S Zagon, and P J McLaughlin
July 1963, Biochimica et biophysica acta,
Copied contents to your clipboard!