The dimensions and shapes of the furanose rings in nucleic acids. 1972

S Arnott, and D W Hukins

A survey was made of the geometry of furanose rings in beta-nucleotides and beta-nucleosides (as monomers related to nucleic acids) for which structures have been determined by X-ray crystallography. Mean values, and estimated standard deviations from them, were calculated for bond-lengths, bond-angles and conformation-angles. For parameters with values dependent on ring-puckering, separate calculations were made for each ring type. (The rings are puckered in one of three conformations: C-2- or C-3-endo or C-3-exo; C-2-exo has not been observed.) The results were used to compute standard furanose rings with C-2-endo, C-3-endo and C-3-exo conformations for use in nucleic acid molecular model-building. The survey also showed that the only other conformation-angle in nucleotides dependent on the furanose ring conformation corresponds to the relative orientation of the purine (or pyrimidine) base and the ring.

UI MeSH Term Description Entries
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009705 Nucleosides Purine or pyrimidine bases attached to a ribose or deoxyribose. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleoside,Nucleoside Analog,Nucleoside Analogs,Analog, Nucleoside,Analogs, Nucleoside
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012266 Ribose A pentose active in biological systems usually in its D-form. D-Ribose,D Ribose
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

S Arnott, and D W Hukins
December 1969, Journal of molecular biology,
S Arnott, and D W Hukins
December 1968, Archives of biochemistry and biophysics,
S Arnott, and D W Hukins
February 1965, Journal of the American Chemical Society,
S Arnott, and D W Hukins
December 1989, Journal of biomolecular structure & dynamics,
S Arnott, and D W Hukins
November 2007, Physical review letters,
Copied contents to your clipboard!