K channels in excitable cells as multi-ion pores. 1979

B Hille, and W Schwarz

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding

Related Publications

B Hille, and W Schwarz
January 1995, Medicina,
B Hille, and W Schwarz
January 2004, Journal of cellular and molecular medicine,
B Hille, and W Schwarz
January 1986, Harvey lectures,
B Hille, and W Schwarz
January 1983, Annual review of physiology,
B Hille, and W Schwarz
January 1985, The Journal of membrane biology,
B Hille, and W Schwarz
January 2001, Biophysical journal,
B Hille, and W Schwarz
September 2005, Prostaglandins & other lipid mediators,
B Hille, and W Schwarz
August 2015, Pharmacology & therapeutics,
B Hille, and W Schwarz
December 1989, Neuron,
Copied contents to your clipboard!