Embryonic development and secretory differentiation in the pars tuberalis of the mouse hypophysis. 1979

M E Stoeckel, and C Hindelang-Gertner, and A Porte

The pars tuberalis (PT) of the mouse, like that of other mammals, consists mainly of glandular cells rich in glycogen and peculiar to this lobe. In the mouse, the glandular cells are characterized by large, dense secretory vesicles (up to 300 nm in diameter), the abundance of which indicates a marked secretory activity. The PT develops from a distinct antero-ventral area of Rathke's pouch. The border between the anlagen of the PT and the pars distalis is formed by Atwell's recessus which represents the access for the vessels afferent to the pars distalis. The pedicle of Rathke's pouch is incorporated into the PT anlage, thus contributing to its formation. The entire PT anlage is characterized by glycogen accumulation from the commencement of its formation and persisting in the adult tuberal lobe. Secretory differentiation of the glandular cells of the PT occurs at day 12 of gestation, preceding that of all other adenohypophysial cell types. The secretory features of these cells (development of ergastoplasm and Golgi apparatus, abundance of dense secretory vesicles) appear at an early stage of the enbryonic life (14 days) comparable to those of mature cells. These results confirm earlier observations in the foetal rat where hypophysial secretion also begins in the PT. The existence of peculiar glandular cells speaks in favour of a specific but still unknown function of the PT during foetal and adult life.

UI MeSH Term Description Entries
D009489 Neurosecretion The production and release of substances such as NEUROTRANSMITTERS or HORMONES from nerve cells. Neurosecretions
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D005865 Gestational Age The age of the conceptus, beginning from the time of FERTILIZATION. In clinical obstetrics, the gestational age is often estimated from the onset of the last MENSTRUATION which is about 2 weeks before OVULATION and fertilization. It is also estimated to begin from fertilization, estrus, coitus, or artificial insemination. Embryologic Age,Fetal Maturity, Chronologic,Chronologic Fetal Maturity,Fetal Age,Maturity, Chronologic Fetal,Age, Embryologic,Age, Fetal,Age, Gestational,Ages, Embryologic,Ages, Fetal,Ages, Gestational,Embryologic Ages,Fetal Ages,Gestational Ages
D006003 Glycogen
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

M E Stoeckel, and C Hindelang-Gertner, and A Porte
April 1992, Acta endocrinologica,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
October 1961, Journal of ultrastructure research,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
September 1948, The Anatomical record,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
November 1966, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
January 1971, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
M E Stoeckel, and C Hindelang-Gertner, and A Porte
January 2001, Cells, tissues, organs,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
January 1980, Folia biologica,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
January 1975, Cell and tissue research,
M E Stoeckel, and C Hindelang-Gertner, and A Porte
December 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
M E Stoeckel, and C Hindelang-Gertner, and A Porte
August 1982, Experientia,
Copied contents to your clipboard!