Characterization of bile acid absorption across the unstirred water layer and brush border of the rat jejunum. 1972

F A Wilson, and J M Dietschy

We have examined the rate-limiting steps involved in bile acid absorption across the unstirred water layer and lipid cell membrane of the jejunal mucosa. Uptake of the polar bile acid taurocholate is limited solely by the cell membrane since this compound permeates the unstirred water layer more rapidly than the lipid cell membrane and stirring does not enhance uptake. With less polar bile acids which permeate the cell membrane relatively more rapidly, however, the unstirred water layer does exert resistance to mucosal uptake of these compounds. That the unstirred water layer is even more rate limiting to uptake from micellar solutions is indicated by the facts that the rate of bile acid absorption from such solutions is lower than from corresponding monomer solutions, stirring markedly enhances uptake from micellar solutions while increases in viscosity of the incubation media depress uptake and expansion of the micelle size further depresses absorption rates. We also have examined the important question of whether the micelle crosses the brush border intact once it reaches the aqueous-lipid interface. The observations that the calculated permeation rate of the micelle should be extremely low, the rate of mucosal cell uptake plateaus at a constant value when the critical micelle concentration is reached at the aqueous-lipid interface, and the different components of a mixed micelle are taken up at different rates indicate that uptake of the intact micelle does not occur; rather, bile acid absorption must be explained in terms of monomers in equilibrium with the micelle. Finally, after correction of the permeability coefficients of the various bile acids for the unstirred layer resistance the incremental partial molar free energy of solution of the hydroxyl group in the brush border membrane was calculated to equal -6126 cal.mole(-1) indicating that passive diffusion of these compounds occurs through a very polar region of the cell membrane.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013656 Taurocholic Acid The product of conjugation of cholic acid with taurine. Its sodium salt is the chief ingredient of the bile of carnivorous animals. It acts as a detergent to solubilize fats for absorption and is itself absorbed. It is used as a cholagogue and cholerectic. Cholyltaurine,Taurine Cholate,Taurocholate,Sodium Taurocholate,Taurocholate Sodium,Taurocholic Acid, (5 alpha)-Isomer,Taurocholic Acid, (7 beta)-Isomer,Taurocholic Acid, Monolithium Salt,Taurocholic Acid, Monosodium Salt,Taurocholate, Sodium
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor

Related Publications

F A Wilson, and J M Dietschy
January 1971, The American journal of physiology,
F A Wilson, and J M Dietschy
April 1982, The American journal of physiology,
F A Wilson, and J M Dietschy
May 1977, The Journal of membrane biology,
F A Wilson, and J M Dietschy
August 1993, Canadian journal of physiology and pharmacology,
F A Wilson, and J M Dietschy
October 1985, Nihon Shokakibyo Gakkai zasshi = The Japanese journal of gastro-enterology,
F A Wilson, and J M Dietschy
July 1987, The Journal of nutrition,
F A Wilson, and J M Dietschy
February 1977, Biochimica et biophysica acta,
F A Wilson, and J M Dietschy
October 1976, Experientia,
F A Wilson, and J M Dietschy
October 1981, Digestive diseases and sciences,
Copied contents to your clipboard!