Biochemical heterogeneity of rat liver mitochondria separated by rate zonal centrifugation. 1972

M A Wilson, and J Cascarano

1. Rat liver mitochondria were separated on the basis of their sedimentation coefficients in an iso-osmotic gradient of Ficoll-sucrose by rate zonal centrifugation. The fractions (33, each of 40ml) were collected in order of decreasing density. Fractions were analysed by spectral analysis to determine any differences in the concentrations of the cytochromes and by enzyme analyses to ascertain any differences in the activities of NADH dehydrogenase, succinate dehydrogenase and alpha-glycerophosphate dehydrogenase. 2. When plotted as% of the highest specific concentration, the contents of cytochrome a+a(3) and cytochrome c+c(1) were constant in all fractions but cytochrome b was only 65% of its maximal concentration in fraction 7 and increased with subsequent fractions. As a result, the cytochrome b/cytochrome a+a(3) ratio almost doubled between fractions 7 and 25 whereas the cytochrome c+c(1)/cytochrome a+a(3) ratio was unchanged. 3. Expression of the dehydrogenase activities as% of highest specific activity showed the following for fractions 6-26: NADH dehydrogenase activity remained fairly constant in all fractions; succinate dehydrogenase activity was 62% in fraction 6 and increased steadily to its maximum in fraction 18 and then decreased; the activity of alpha-glycerophosphate dehydrogenase was only 53% in fraction 6 and increased slowly to its peak in fractions 22 and 24. 4. These differences did not result from damaged or fragmented mitochondria or from microsomal contamination. 5. These results demonstrate that isolated liver mitochondria are biochemically heterogeneous. The importance of using a system for separating biochemically different mitochondria in studies of mitochondrial biogenesis is discussed.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002501 Centrifugation, Zonal Centrifugation using a rotating chamber of large capacity in which to separate cell organelles by density-gradient centrifugation. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Zonal,Zonal Centrifugation,Zonal Centrifugations
D003580 Cytochromes Hemeproteins whose characteristic mode of action involves transfer of reducing equivalents which are associated with a reversible change in oxidation state of the prosthetic group. Formally, this redox change involves a single-electron, reversible equilibrium between the Fe(II) and Fe(III) states of the central iron atom (From Enzyme Nomenclature, 1992, p539). The various cytochrome subclasses are organized by the type of HEME and by the wavelength range of their reduced alpha-absorption bands. Cytochrome
D005993 Glycerolphosphate Dehydrogenase Alpha-Glycerophosphate Dehydrogenase,Glycerol-3-Phosphate Dehydrogenase,Glycerophosphate Dehydrogenase,Glycerophosphate Oxidase,Alpha Glycerophosphate Dehydrogenase,Dehydrogenase, Alpha-Glycerophosphate,Dehydrogenase, Glycerol-3-Phosphate,Dehydrogenase, Glycerolphosphate,Dehydrogenase, Glycerophosphate,Glycerol 3 Phosphate Dehydrogenase,Oxidase, Glycerophosphate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D013385 Succinate Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II. Succinic Oxidase,Fumarate Reductase,Succinic Dehydrogenase,Dehydrogenase, Succinate,Dehydrogenase, Succinic,Oxidase, Succinic,Reductase, Fumarate

Related Publications

M A Wilson, and J Cascarano
April 1975, The Australian journal of experimental biology and medical science,
M A Wilson, and J Cascarano
June 1966, National Cancer Institute monograph,
M A Wilson, and J Cascarano
September 1967, The Journal of biological chemistry,
M A Wilson, and J Cascarano
January 1968, The Wistar Institute symposium monograph,
M A Wilson, and J Cascarano
April 1974, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M A Wilson, and J Cascarano
July 1975, Experimental cell research,
M A Wilson, and J Cascarano
December 1972, Journal of bioenergetics,
Copied contents to your clipboard!