Mechanism of the 2,3-diphosphoglycerate-dependent phosphoglycerate mutase from rabbit muscle. 1972

H G Britton, and J B Clarke

1. The properties and kinetics of the 2,3-diphosphoglycerate-dependent phosphoglycerate mutases are discussed. There are at least three possible mechanisms for the reaction: (i) a phosphoenzyme (Ping Pong) mechanism; (ii) an intermolecular transfer of phosphate from 2,3-diphosphoglycerate to the substrates (sequential mechanism); (iii) an intramolecular transfer of phosphate. It is concluded that these mechanisms cannot be distinguished by conventional kinetic measurements. 2. The fluxes for the different mechanisms are calculated and it is shown that it should be possible to distinguish between the mechanisms by appropriate induced-transport tests and by comparing the fluxes of (32)P- and (14)C-labelled substrates at chemical equilibrium. 3. With (14)C-labelled substrates no induced transport was found over a wide concentration range, and with (32)P-labelled substrates co-transport occurred that was independent of concentration over a twofold range. (14)C-labelled substrates exchange at twice the rate of (32)P-labelled substrates at chemical equilibrium. The results were completely in accord with a phosphoenzyme mechanism and indicated a rate constant for the isomerization of the phosphoenzyme of not less than 4x10(6)s(-1). The intramolecular transfer of phosphate (and intermolecular transfer between two or more molecules of substrate) were completely excluded. The intermolecular transfer of phosphate from 2,3-diphosphoglycerate would have been compatible with the results only if the K(m) for 2-phosphoglycerate had been over 7.5-fold smaller than the observed value and if an isomerization of the enzyme-2,3-diphosphoglycerate complex had been the major rate-limiting step in the reaction. 4. The very rapid isomerization of the phosphoenzyme that the experiments demonstrate suggests a mechanism that does not involve a formal isomerization. According to this new scheme the enzyme is closely related mechanistically and perhaps evolutionarily to a 2,3-diphosphoglycerate diphosphatase.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010759 Phosphorus Isotopes Stable phosphorus atoms that have the same atomic number as the element phosphorus, but differ in atomic weight. P-31 is a stable phosphorus isotope. Isotopes, Phosphorus
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D005994 Glycerophosphates Any salt or ester of glycerophosphoric acid. Glycerolphosphate,Glycerophosphate,Calcium Glycerophosphate,Glycerolphosphates,Glycerophosphate, Calcium

Related Publications

H G Britton, and J B Clarke
November 1971, Biochemistry,
H G Britton, and J B Clarke
December 1966, The Journal of biological chemistry,
H G Britton, and J B Clarke
November 1974, Archives of biochemistry and biophysics,
Copied contents to your clipboard!