A study of the reinnervation of fast and slow mammalian muscles. 1973

J J McArdle, and E X Albuquerque

Miniature end plate potential (mepp) frequency in innervated extensor muscle is significantly higher than in soleus muscle. 9 days after nerve crush mepps of low amplitude and prolonged duration reappeared at a frequency of 2% of control and were similar to normal muscles after 35 days. Membrane potential began to increase 9-10 days after nerve crush and at 30 days was similar to controls. The region most sensitive to ACh in denervated and reinnervated muscles was the end plate. Caffeine (20 mM, 23 degrees C) induced contracture in innervated soleus but not in extensor muscles. After denervation the extensor became sensitive to caffeine while the soleus muscles decreased in sensitivity to the drug; 4-5 days after reinnervation the effect of caffeine on these muscles was similar to control. The events during reinnervation are: (a) reappearance of mepps at the same time as end plate potential and muscle twitch; (b) partial restoration of the membrane potential; (c) return of caffeine-induced contracture to normal levels in the soleus and its absence in the extensor muscles; (d) return of membrane resistance to normal values in both muscles at about 25 days; and (e) return of ACh-sensitivity to control levels at about 30 days in both muscles. Although these results suggest that the membrane potential and sarcoplasmic reticulum are under neural influence, it remains to be established whether or not separate neurotrophic factors are involved.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

J J McArdle, and E X Albuquerque
December 1973, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
J J McArdle, and E X Albuquerque
June 1980, The Journal of general physiology,
J J McArdle, and E X Albuquerque
November 1975, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J J McArdle, and E X Albuquerque
January 1970, Experimental neurology,
J J McArdle, and E X Albuquerque
January 1966, Physiologia Bohemoslovaca,
J J McArdle, and E X Albuquerque
February 1982, Federation proceedings,
J J McArdle, and E X Albuquerque
August 1978, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
J J McArdle, and E X Albuquerque
June 1983, Pflugers Archiv : European journal of physiology,
J J McArdle, and E X Albuquerque
June 1976, The American journal of physiology,
Copied contents to your clipboard!