HCO3-stimulated Cl efflux in the gulf toadfish acclimated to sea water. 1979

G A Kormanik, and D H Evans

Unidirectional efflux of Cl was examined in the Gulf toadfish, Opsanus beta, in artificial seawater solutions with modified concentrations of Cl and HCO3. Removal of Cl HCO3 reduced Cl efflux. Addition of HCO3 at typical seawater concentrations stimulated Cl efflux, independent of changes in the transepithelial potential. This active, HCO3-stimulated Cl efflux is saturable, with a Km of 2.4 mM, typical of the concentration of HCO3 found in sea water, and independent of external pH. Active extrusion of Cl offsets the net diffusional and oral gain of Cl faced by O. beta in sea water.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012623 Seawater The salinated water of OCEANS AND SEAS that provides habitat for marine organisms. Sea Water,Sea Waters,Seawaters,Water, Sea,Waters, Sea
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D014882 Water-Electrolyte Balance The balance of fluid in the BODY FLUID COMPARTMENTS; total BODY WATER; BLOOD VOLUME; EXTRACELLULAR SPACE; INTRACELLULAR SPACE, maintained by processes in the body that regulate the intake and excretion of WATER and ELECTROLYTES, particularly SODIUM and POTASSIUM. Fluid Balance,Electrolyte Balance,Balance, Electrolyte,Balance, Fluid,Balance, Water-Electrolyte,Water Electrolyte Balance

Related Publications

G A Kormanik, and D H Evans
August 2015, American journal of physiology. Regulatory, integrative and comparative physiology,
G A Kormanik, and D H Evans
February 1985, The American journal of physiology,
G A Kormanik, and D H Evans
December 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
G A Kormanik, and D H Evans
January 1999, The Journal of experimental zoology,
G A Kormanik, and D H Evans
April 2000, Zoological science,
G A Kormanik, and D H Evans
June 1995, Biokhimiia (Moscow, Russia),
G A Kormanik, and D H Evans
May 1987, The American journal of physiology,
G A Kormanik, and D H Evans
June 2009, American journal of physiology. Gastrointestinal and liver physiology,
Copied contents to your clipboard!