Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. 1979

G A Graziadei, and P P Graziadei

This report describes the retrograde degeneration affecting olfactory sensory neurons of rats after severance of their axons and illustrates the reconstitution of new neurons originating from stem cells located at the base of the olfactory neuroepithelium. Degeneration of the mature, axotomized neurons, signalled by an increased electron density of their cytoplasmic matrix and by the appearance of lipofuscin-like granules, can be detected in the neuroepithelium as early as 24 h after surgery and becomes conspicuous between the second and the third day. Degenerating neurons can be observed in decreasing number up to the tenth post-operative day. They are removed by macrophages which invade the epithelium. The reconstitution of new neurons begins to occur after eight days, when the stem cells undergo vigorous mitotic activity and differentiate into neurons. The morphology of the reconstituted neurons has been described in detail at different stages of their maturation. After 30 days, the olfactory epithelium appears similar to controls. On the basis of both morphological (in rats) and autoradiographic ( in mice) observations, the basal cells have been recognized as stem cells of the olfactory neurons.

UI MeSH Term Description Entries
D008297 Male Males
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009832 Olfactory Nerve The 1st cranial nerve. The olfactory nerve conveys the sense of smell. It is formed by the axons of OLFACTORY RECEPTOR NEURONS which project from the olfactory epithelium (in the nasal epithelium) to the OLFACTORY BULB. Cranial Nerve I,First Cranial Nerve,Nervus Olfactorius,Fila Olfactoria,Olfactory Fila,Cranial Nerve Is,Cranial Nerve, First,Cranial Nerves, First,First Cranial Nerves,Nerve I, Cranial,Nerve Is, Cranial,Nerve, First Cranial,Nerve, Olfactory,Nerves, Olfactory,Olfactory Nerves
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

G A Graziadei, and P P Graziadei
April 1969, Shinkei kenkyu no shimpo. Advances in neurological sciences,
G A Graziadei, and P P Graziadei
January 1982, Bibliotheca anatomica,
G A Graziadei, and P P Graziadei
January 1992, Zhonghua er bi yan hou ke za zhi,
G A Graziadei, and P P Graziadei
November 2017, Developmental neurobiology,
G A Graziadei, and P P Graziadei
January 2017, Experimental neurology,
G A Graziadei, and P P Graziadei
February 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!