Descending influences on the responses of spinocervical tract neurones to chemical stimulation of fine muscle afferents. 1979

S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch

1. In cats, extracellular micro-electrode recordings were made from axons of the spinocervical tract (s.c.t.) in both the decerebrate state and during cold block of the spinal cord (reversible spinal state) to examine the effects of intra-arterial injection of algesic agents (bradykinin, potassium, 5-hydroxytryptamine) into the gastrocnemius-soleus (g.s.) muscle on the discharge behaviour of s.c.t. neurones.2. In the decerebrate state without cooling the spinal cord 13% of the cells (eleven out of eighty-three) responded to intra-arterial injection of bradykinin, 33% (twenty-two out of sixty-nine) to 5-hydroxytryptamine, and 38% (thirty-five out of ninety-one) to potassium injection.3. The general time course and the latency of the responses of s.c.t. cells induced by injection of pain-producing substances into the g.s. muscle reflect in many respects the activations of g.s. group III and group IV primary afferent units studied previously.4. For twenty-seven s.c.t. neurones the period of recording was long enough to record the responses of the same cell to injections of algesic agents in both the decerebrate and the reversible spinal state. In the reversible spinal state 83% (nineteen out of twenty-three) of the s.c.t. neurones tested with all the three substances responded to at least one of the algesic agents. In the decerebrate state the percentage was lower (39%).5. Reversible spinalization led not only to a significant increase in the number of s.c.t. neurones responding to the algesic agents used but also to an increase in the magnitude of the chemically induced responses.6. The mean latency of the responses of neurones that were activated in both preparations were shorter in the reversible spinal state than in the decerebrate state.7. Control experiments showed that the responses to bradykinin and potassium were entirely due to the nervous outflow from the g.s. muscle. In contrast, intra-arterially applied 5-hydroxytryptamine influenced the s.c.t. cells via unknown additional sites of action.8. The results indicate that muscular group III and/or group IV units excitable by algesic substances do project on to neurones of the spinocervical tract. Furthermore it is concluded that the responses of s.c.t. neurones to activation of fine muscle afferents by algesic agents are subject to a descending control similar to the well known descending modulation of their responsiveness to cutaneous input. Therefore, in addition to serving as a cutaneous pathway the spinocervical tract may take part in muscular nociception.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine

Related Publications

S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
May 1977, The Journal of physiology,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
January 1969, Experimental brain research,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
November 1978, Brain research,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
December 1968, The Journal of physiology,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
January 1979, The Journal of physiology,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
November 1984, The Journal of physiology,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
February 1982, Brain research,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
December 1971, The Journal of physiology,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
April 1973, Brain research,
S K Hong, and K D Kniffke, and S Mense, and R F Schmidt, and M Wendisch
October 1978, The Journal of physiology,
Copied contents to your clipboard!