Segmental and supraspinal input to cells of origin of non-primary fibres in the feline dorsal columns. 1979

E Jankowska, and J Rastad, and P Zarzecki

1. The synaptic input to ascending tract cells with axons in the dorsal columns was investigated using intracellular recording. 2. E.p.s.p.s evoked by stimulation of the lateral funiculus were analysed to test for the possibility of collateral connexions between spino-cervical tract cells and dorsal column cells. Three groups of fibres were found to contribute to such e.p.s.p.s: fibres which terminated or originated between spinal segments C3-4 and C1, or Th9 and C3-4 and cortico-spinal tract fibres. The latencies and thresholds of e.p.s.p.s evoked by stimulation of the first group of fibres were compatible with their origin via axon collaterals of spino-cervical tract cells. The occurrence of these e.p.s.p.s in dorsal column cells which were disynaptically excited from cutaneous afferents further corroborated this possibility. 3. E.P.S.P.S of specifically cervical origin were also found in some other neurones in the dorsal horn, probably segmental interneurones, but were absent in spinocervical tract cells. 4. Convergence of group I muscle afferents (possibly both group Ia and group Ib) and cutaneous afferents was found in about 50% of the dorsal column cells. The shortest latency e.p.s.p.s from cutaneous and group I afferents were evoked with segmental delays indicating monosynaptic and disynaptic coupling. 5. I.p.s.p.s were evoked from cutaneous and group I muscle afferents in either the same or different nerves as those from which the e.p.s.p.s were elicited. Excitatory potentials were, however, dominating.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

E Jankowska, and J Rastad, and P Zarzecki
December 1981, Brain research,
E Jankowska, and J Rastad, and P Zarzecki
August 1989, The Journal of physiology,
E Jankowska, and J Rastad, and P Zarzecki
September 1981, Journal of neurophysiology,
E Jankowska, and J Rastad, and P Zarzecki
December 1972, Brain research,
E Jankowska, and J Rastad, and P Zarzecki
June 1957, Brain : a journal of neurology,
E Jankowska, and J Rastad, and P Zarzecki
December 1985, Brain research,
E Jankowska, and J Rastad, and P Zarzecki
January 1977, Experimental brain research,
E Jankowska, and J Rastad, and P Zarzecki
January 1998, Acta oto-laryngologica. Supplementum,
Copied contents to your clipboard!