Metabolism of proinsulin, insulin, and C-peptide in the rat. 1973

A I Katz, and A H Rubenstein

The renal extraction and excretion of bovine proinsulin, insulin, and C-peptide and the contribution of the kidney to their total metabolic clearance rate (MCR) were studied in the rat. Metabolic clearance rates were measured by the constant infusion technique and plasma and urine concentrations of each polypeptide were determined by radioimmunoassay. The MCR of insulin (16.4+/-0.4 ml/min) was significantly greater than that of either proinsulin (6.7+/-0.3 ml/min) or C-peptide (4.6+/-0.2 ml/min). Metabolic clearance rates were independent of plasma levels over a range of steady-state plasma concentrations varying from 1 to 15 ng/ml.In contrast to the differences in their metabolic clearance rates, the renal disposition of the three polypeptides was similar, being characterized by high extraction and very low urinary clearance. The renal arteriovenous difference of proinsulin, insulin, and C-peptide averaged 36, 40, and 44%, respectively, and was linearly related to their arterial concentration between 2 and 25 ng/ml. When glomerular filtration was markedly reduced or stopped by ureteral obstruction, the renal extraction of proinsulin, insulin, and C-peptide was invariably greater than the simultaneously measured extraction of inulin, indicating that these polypeptides are removed from the renal circulation by both glomerular filtration and direct uptake from peritubular capillary blood. The fractional urinary clearance of each polypeptide never exceeded 0.6%, indicating that more than 99% of the amount filtered was sequestered in the kidney. The renal removal of proinsulin and C-peptide from the circulation accounts for 55 and 69% of their metabolic clerance rates, while the renal contribution to the peripheral metabolism of insulin was smaller, averaging 33%. This difference is due to the fact that insulin, but not the other two polypeptides, is metabolized to a significant extent by the liver. These results define the renal handling of proinsulin, insulin, and C-peptide in the rat and indicate that in this species the kidney represents a major site for insulin metabolism and is the main organ responsible for the degradation of proinsulin and C-peptide.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007671 Kidney Concentrating Ability The ability of the kidney to excrete in the urine high concentrations of solutes from the blood plasma. Urine Concentrating Ability,Abilities, Kidney Concentrating,Abilities, Urine Concentrating,Ability, Kidney Concentrating,Ability, Urine Concentrating,Concentrating Abilities, Kidney,Concentrating Abilities, Urine,Concentrating Ability, Kidney,Concentrating Ability, Urine,Kidney Concentrating Abilities,Urine Concentrating Abilities
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows

Related Publications

A I Katz, and A H Rubenstein
January 1971, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
A I Katz, and A H Rubenstein
September 1999, Annals of clinical biochemistry,
A I Katz, and A H Rubenstein
January 1973, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
A I Katz, and A H Rubenstein
January 1975, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
A I Katz, and A H Rubenstein
February 2012, Biochemical and biophysical research communications,
A I Katz, and A H Rubenstein
January 1989, Journal of electron microscopy technique,
A I Katz, and A H Rubenstein
August 2006, Cellular and molecular life sciences : CMLS,
A I Katz, and A H Rubenstein
October 1996, Diabetic medicine : a journal of the British Diabetic Association,
Copied contents to your clipboard!