Mechanisms of immune lysis of red blood cells in vitro. I. Paroxysmal nocturnal hemoglobinuria cells. 1973

G L Logue, and W F Rosse, and J P Adams

The effect of five different reactions which activate complement (antibody activation, reduction in ionic strength, acidification, cobra venom factor (CoF) activation, and inulin activation) upon normal and PNH cells was investigated, using normal serum and serum devoid of the fourth component of complement (C4) activity from patients with hereditary angioneurotic edema (HANE) as a source of complement. Both normal and HANE serum lysed paroxysmal nocturnal hemoglobinuria (PNH) cells when complement was activated by acidification, CoF and inulin, indicating that the terminal steps of complement were activated in the absence of C4, presumably by the alternate or properdin pathway. Normal but not HANE serum lysed cells coated with anti-I, indicating that complement was activated by the C1-dependent classic pathway. HANE serum partially supported lysis by serum at reduced ionic strength, indicating that the activation of terminal complement components had occurred through both of the pathways of activation. The amount of the third component of human complement (C3) which was bound to the membrane of lysed and unlysed cells by these procedures was determined by anti-C3 absorption and was found to differ for each method of complement activation. In general, more C3 was bound to lysed cells than to unlysed cells. For given conditions, more was bound to PNH cells than to normal cells. However, very much less bound C3 was required for lysis of the PNH cells than for lysis of normal cells. These two phenomena, especially the latter, account for the marked lysis of PNH cells when complement is activated. Normal cells treated with AET (aminoethylisothiouronium bromide) did not bind more C3 than untreated cells and the lysed cells had less bound C3 than lysed PNH cells.

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003168 Complement Fixation Tests Serologic tests based on inactivation of complement by the antigen-antibody complex (stage 1). Binding of free complement can be visualized by addition of a second antigen-antibody system such as red cells and appropriate red cell antibody (hemolysin) requiring complement for its completion (stage 2). Failure of the red cells to lyse indicates that a specific antigen-antibody reaction has taken place in stage 1. If red cells lyse, free complement is present indicating no antigen-antibody reaction occurred in stage 1. Complement Absorption Test, Conglutinating,Conglutination Reaction,Conglutinating Complement Absorption Test,Complement Fixation Test,Conglutination Reactions,Fixation Test, Complement,Fixation Tests, Complement,Reaction, Conglutination,Reactions, Conglutination,Test, Complement Fixation,Tests, Complement Fixation
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006457 Hemoglobinuria, Paroxysmal A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins. Paroxysmal Cold Hemoglobinuria,Paroxysmal Nocturnal Hemoglobinuria,Marchiafava-Micheli Syndrome,Paroxysmal Hemoglobinuria,Paroxysmal Hemoglobinuria, Cold,Paroxysmal Hemoglobinuria, Nocturnal,Cold Paroxysmal Hemoglobinuria,Hemoglobinuria, Cold Paroxysmal,Hemoglobinuria, Nocturnal Paroxysmal,Hemoglobinuria, Paroxysmal Cold,Hemoglobinuria, Paroxysmal Nocturnal,Marchiafava Micheli Syndrome,Nocturnal Paroxysmal Hemoglobinuria,Syndrome, Marchiafava-Micheli
D006461 Hemolysis The destruction of ERYTHROCYTES by many different causal agents such as antibodies, bacteria, chemicals, temperature, and changes in tonicity. Haemolysis,Extravascular Hemolysis,Intravascular Hemolysis,Extravascular Hemolyses,Haemolyses,Hemolyses, Extravascular,Hemolyses, Intravascular,Hemolysis, Extravascular,Hemolysis, Intravascular,Intravascular Hemolyses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G L Logue, and W F Rosse, and J P Adams
January 1962, Folia haematologica (Leipzig, Germany : 1928),
G L Logue, and W F Rosse, and J P Adams
January 1977, American journal of hematology,
G L Logue, and W F Rosse, and J P Adams
October 1967, The Tohoku journal of experimental medicine,
G L Logue, and W F Rosse, and J P Adams
January 2006, Laboratory hematology : official publication of the International Society for Laboratory Hematology,
G L Logue, and W F Rosse, and J P Adams
April 2008, Experimental hematology,
Copied contents to your clipboard!