Effects of electrogenic sodium pumping on the membrane potential of longitudinal smooth muscle from terminal ileum of guinea-pig. 1973

T B Bolton

1. The membrane potential of the separated longitudinal muscle of the guinea-pig terminal ileum was recorded intracellularly with glass micro-electrodes.2. In tissues kept at room temperature and then brought to 35 degrees C for 15-30 min or about 1 hr, the fall in membrane potential upon changing to potassium-free solution was 21.4 +/- 3.5 mV and 13.4 +/- 1.8 mV respectively. Ouabain (1.7 x 10(-6)M) produced a fall in membrane potential of 8.1 +/- 1.1 mV. Returning potassium to potassium-free solution, or changing from ouabain-containing to ouabain-free solution, resulted in an increase in membrane potential which was greater than the initial fall.3. Readmitting potassium to potassium-free solution produced an increase in membrane potential which began within 10 sec and reached a maximum within 15-30 sec. This response was reduced, abolished, or converted to a depolarization by ouabain. In chloride-deficient (13 mM) solution in which membrane resistance was increased, the response to readmitting potassium was increased 2(1/2)-fold so that the membrane potential sometimes exceeded -100 mV, which was probably more negative than E(K). On the basis of these results it was assumed that the response to readmitting potassium was due to the electrogenic activity of the sodium pump.4. The response to briefly readmitting a fixed concentration of potassium increased during the first 30 min in potassium-free solution. This increase was not due to an increase in membrane resistance as this fell with time in potassium-free solution. It was suggested that the increase in the response resulted from the progressive rise in internal sodium concentration which is known to occur in smooth muscle in potassium-free solution.5. Increasing the concentration of potassium over the range approximately 0.1-20 mM, increased the size of the electrogenic potential observed upon readmitting potassium to potassium-free solution. There was a fall in membrane resistance upon readmitting potassium (0.6, 5.9, or 20 mM) which was greater the larger the concentration of potassium. When allowance was made for the fall in membrane resistance, the dependency of the electrogenic response upon the concentration of potassium over the range 0.6-20 mM was much increased.6. The results indicate that the rate of electrogenic sodium pumping in this tissue is increased by increasing the external potassium concentration, and probably by increasing the internal sodium concentration. It was suggested that a rise in the latter could sensitize the pump to an increase in the former.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D003864 Depression, Chemical The decrease in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Depression,Chemical Depressions,Depressions, Chemical
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

T B Bolton
July 1973, Archives internationales de pharmacodynamie et de therapie,
T B Bolton
August 1999, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
T B Bolton
November 1975, The American journal of physiology,
T B Bolton
October 1984, The Journal of pharmacology and experimental therapeutics,
T B Bolton
August 1973, British journal of pharmacology,
Copied contents to your clipboard!