Atypical axon-Schwann cell relationships in the common peroneal nerve of the dystrophic mouse: an ultrastructural study. 1979

E Jaros, and W G Bradley

Several atypical features of myelination of the peripheral nervous system are reported in common peroneal nerve of dystrophic mice (129 Re J dy/dy): (i) central nervous system-like contact between myelin sheaths of adjacent nerve fibres; (ii) nodes and internodes of myelinated fibres enwrapped with cytoplasmic processes of Schwann cells from adjacent nerve fibres; (iii) Schwann cells of adjacent nerve fibres co-operating in formation of a single myelin sheath; and (iv) a single Schwann cell myelinating two separate axons. In view of the presence of similar features of myelination in the central nervous system, where the myelin producing cells lack basement membrane, we suggest that in the dystrophic peripheral nerves the development of these features can be attributed to the partial deficiency of the Schwann cell basement membrane. Two types of widened nodes of Ranvier are also identified: (i) nodes with paranodal damage; and (ii) nodes without paranodal damage. In addition, abnormal features of myelination are described which are likely to represent altered Schwann cell/axon relationships during demyelination and remyelination and/or decreased myelinating ability of Schwann cells. We interpret these findings as indicating a metabolic disorder of Schwann cells. They provide an experimental model for the investigation of factors involved in the origin and maintenance of the structural organization of peripheral nerve.

UI MeSH Term Description Entries
D009137 Muscular Dystrophy, Animal MUSCULAR DYSTROPHY that occurs in VERTEBRATE animals. Animal Muscular Dystrophies,Animal Muscular Dystrophy,Dystrophies, Animal Muscular,Dystrophy, Animal Muscular,Muscular Dystrophies, Animal
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D010543 Peroneal Nerve The lateral of the two terminal branches of the sciatic nerve. The peroneal (or fibular) nerve provides motor and sensory innervation to parts of the leg and foot. Fibular Nerve,Fibular Nerves,Nerve, Fibular,Nerve, Peroneal,Nerves, Fibular,Nerves, Peroneal,Peroneal Nerves
D011901 Ranvier's Nodes Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001485 Basement Membrane A darkly stained mat-like EXTRACELLULAR MATRIX (ECM) that separates cell layers, such as EPITHELIUM from ENDOTHELIUM or a layer of CONNECTIVE TISSUE. The ECM layer that supports an overlying EPITHELIUM or ENDOTHELIUM is called basal lamina. Basement membrane (BM) can be formed by the fusion of either two adjacent basal laminae or a basal lamina with an adjacent reticular lamina of connective tissue. BM, composed mainly of TYPE IV COLLAGEN; glycoprotein LAMININ; and PROTEOGLYCAN, provides barriers as well as channels between interacting cell layers. Basal Lamina,Basement Lamina,Lamina Densa,Lamina Lucida,Lamina Reticularis,Basement Membranes,Densas, Lamina,Lamina, Basal,Lamina, Basement,Lucida, Lamina,Membrane, Basement,Membranes, Basement,Reticularis, Lamina
D012583 Schwann Cells Neuroglial cells of the peripheral nervous system which form the insulating myelin sheaths of peripheral axons. Schwann Cell,Cell, Schwann,Cells, Schwann
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

E Jaros, and W G Bradley
November 1975, Journal of neuropathology and experimental neurology,
E Jaros, and W G Bradley
October 1979, Journal of neurocytology,
E Jaros, and W G Bradley
December 1981, The Journal of experimental biology,
E Jaros, and W G Bradley
January 1979, Annals of the New York Academy of Sciences,
E Jaros, and W G Bradley
September 1972, The Journal of physiology,
E Jaros, and W G Bradley
January 1968, Journal of neuropathology and experimental neurology,
E Jaros, and W G Bradley
July 2005, Journal of neuropathology and experimental neurology,
Copied contents to your clipboard!