An electrophysiological analysis of the storage and release of noradrenaline at sympathetic nerve terminals. 1973

M R Bennett

1. An electrophysiological analysis has been made of the storage and release of noradrenaline (NAd) in the sympathetic nerve terminals of the isolated vas deferens of the mouse. The amplitude of the excitatory junction potentials (e.j.p.s) recorded intracellularly in smooth muscle cells was taken as a measure of the NAd output per impulse from the terminals of sympathetic axons.2. During short trains of impulses (< 100), the amplitude of the e.j.p. increased with successive impulses at the beginning of a train, and then either continued to increase until a steady-state amplitude was reached (frequencies < 1 Hz), or decreased until a depressed steady amplitude was reached (frequencies > 1 Hz).3. During trains of impulses lasting for several minutes, the amplitude of the e.j.p. continually declined (frequencies > 1 Hz) until a steady-state amplitude was reached after 8 min of stimulation. This steady-state amplitude is smaller, the higher the frequency of stimulation.4. During short trains of impulses in the presence of high magnesium solutions, the amplitude of successive e.j.p.s increased until a steady state was reached, no matter what the frequency of stimulation. This growth of the e.j.p. amplitude during a train could be quantitatively predicted in terms of the linear summation of the individual facilitatory effects introduced by each impulse in the train.5. During trains of impulses lasting for several minutes, in the presence of a NAd synthesis blocker, the amplitude of the e.j.p. continually declined along a curve which could be described as the sum of two exponential components: one with a time constant of 1 min and the other of 10 min.6. These results suggest that NAd is released from a small pool of transmitter in sympathetic nerve terminals, which is replenished from two stores, which are in turn replenished by the synthesis of new NAd.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D013566 Sympathomimetics Drugs that mimic the effects of stimulating postganglionic adrenergic sympathetic nerves. Included here are drugs that directly stimulate adrenergic receptors and drugs that act indirectly by provoking the release of adrenergic transmitters. Amines, Sympathomimetic,Sympathomimetic,Sympathomimetic Agent,Sympathomimetic Drug,Sympathomimetic Agents,Sympathomimetic Drugs,Sympathomimetic Effect,Sympathomimetic Effects,Agent, Sympathomimetic,Agents, Sympathomimetic,Drug, Sympathomimetic,Drugs, Sympathomimetic,Effect, Sympathomimetic,Effects, Sympathomimetic,Sympathomimetic Amines

Related Publications

M R Bennett
May 1971, The Journal of physiology,
M R Bennett
January 1967, Acta physiologica Scandinavica. Supplementum,
M R Bennett
January 1988, Progress in neurobiology,
Copied contents to your clipboard!