Organ culture of adult amphibian heart: a fine structural analysis. 1979

A C Nag, and C J Healy, and M Cheng

Pieces of hearts from adult newts were cultured up to 2 months. Within 7 days of culture, approximately 37% of the cardiac explants were attached to the substrate and more than 33% of the attached explants and approximately 15% of the unattached explants established pulsation rates ranging from 3 to 67 beats/min. The control and cultured explants were processed at weekly intervals for electron microscopy. The diameter of the control cardiac muscle cells ranged approximately 3-5 micron. The cell surface was provided with microvilli. The intercellular spaces ranged approximately 150-500 A. The intercalated discs lacked the step-like courses observed in the mammalian cardiac muscle. Sarcoplasmic reticulum was scanty. Desmosomal-dense materials were frequently continuous with the Z-bands of both control and cultured cardiac muscle cells. The transverse tubular system and gap junction were absent in newt ventricles. The functional implications of these characterisitics are discussed. At the end of 1 week of culture, the surfaces of the explants were covered by one or more layers of non-muscle cells, and the core of the explants consisted mostly of cardiac muscle cells. In a few cardiac muscle cells the myofibrillar organization was disrupted, resulting in the distribution of scattered patches of myofibrils and free myofilaments in the sarcoplasm. A small number of intact muscle cells contained a considerable number of dense granules in the sarcoplasm. At 15 days in culture, a large number of muscle cells showed structural features reminiscent of embryonic cardiac muscle cells. These cells possessed patches of myofibrils, scattered myofilaments and scanty sarcoplasmic reticulum along with other cellular organelles and inclusions. Several of these altered cardiac muscle cells contained mitotic figures. The cardiac explants maintained the initial beating rate until the end of 2 months of culture, except for the 11% of the explants which stopped beating. By 3-4 weeks in culture, most of the cardiac muscle cells possessed the altered cell morphology mentioned above. The explants after 60 days in culture became more flattened than the earlier explants. The intact cardiac muscle cells were rare, and the cores of the explants were mostly occupied by the altered cardiac muscle cells. It is evident from our studies that the cardiac muscle cells have undergone dedifferentiation in long-term culture, and that this dedifferentiation process has yet had no effect in the maintenance of contractility of the explants. Furthermore, these dedifferentiated cardiac muscle cells are capable of DNA synthesis and mitosis.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A C Nag, and C J Healy, and M Cheng
May 1973, Experientia,
A C Nag, and C J Healy, and M Cheng
January 1976, Methods in cell biology,
A C Nag, and C J Healy, and M Cheng
November 1970, Experientia,
A C Nag, and C J Healy, and M Cheng
January 1973, Arthritis and rheumatism,
A C Nag, and C J Healy, and M Cheng
June 1971, The Anatomical record,
A C Nag, and C J Healy, and M Cheng
June 1966, Experimental cell research,
A C Nag, and C J Healy, and M Cheng
March 1989, Lymphology,
A C Nag, and C J Healy, and M Cheng
October 1996, Cell and tissue research,
A C Nag, and C J Healy, and M Cheng
January 1985, Tissue & cell,
Copied contents to your clipboard!