Membrane permeability during low potassium depolarization in sheep cardiac Purkinje fibers. 1979

C O Lee, and H A Fozzard

Exposure of sheep Purkinje fibers to low [K]o leads to marked depolarization to a stable potential of about -40 mV. This level is equivalent to the plateau of the Purkinje fiber action potential. The low [K]o depolarization could be prevented by removal of [Na]o and was modified by tetrodotoxin. The membrane potential in the depolarized state was unresponsive to changes in [Cl]o or [Ca]o and it was poorly responsive to changes in [K]o between 0 and 2 mM. Repolarization was induced by decrease in [Na]o with a slope response of 30 mV/10-fold change in [Na]o. Average internal K activity (aK) in the resting state with a [K]o of 5 mM was 121.4 mM for a membrane potential of -80 mV. During low K depolarization aK was 119.7 mM with a membrane potential of -34 mV. The depolarization was therefore due to a change in membrane permeability, with little change in aK. Upon restoration of [K]o the fiber repolarized to values transiently more negative than the prior resting potential. These transient potentials were more negative than the K equilibrium potential (VK), if it is calculated assuming a uniform [K]o. The hyperpolarization was reduced by ouabain [10(-6)] or by low [Ca]o.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011690 Purkinje Fibers Modified cardiac muscle fibers composing the terminal portion of the heart conduction system. Purkinje Fiber,Fiber, Purkinje,Fibers, Purkinje
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

C O Lee, and H A Fozzard
August 1984, The American journal of physiology,
C O Lee, and H A Fozzard
October 1991, Journal of electrocardiology,
C O Lee, and H A Fozzard
January 1991, Journal de physiologie,
C O Lee, and H A Fozzard
January 1983, Cell and tissue research,
C O Lee, and H A Fozzard
July 1973, Circulation research,
C O Lee, and H A Fozzard
April 1994, Sheng li xue bao : [Acta physiologica Sinica],
C O Lee, and H A Fozzard
April 1969, Biophysical journal,
C O Lee, and H A Fozzard
May 1981, Circulation research,
C O Lee, and H A Fozzard
January 1971, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!