High-yield cleavage of tryptophanyl peptide bonds by o-iodosobenzoic acid. 1979

W C Mahoney, and M A Hermodson

A new procedure to cleave tryptophanyl peptide bonds in high yield is reported. The method involves treatment of the S-alkylated protein with o-iodosobenzoic acid. The procedure is highly selective for tryptophan and does not modify tyrosine or histidine, but may convert methionine to its sulfoxide derivative. The yields in the cleavage are 70--100%. Tryptophanyl bonds to alanine, glycine, serine, threonine, glutamine, arginine, and S-(pyridylethyl)cysteine are split in nearly quantitative yield, while those preceding isoleucine or valine are split in approximately 70% yield in the proteins examined in this work. The chemical mechanism for tryptophanyl bond cleavage has not been defined, but it is likely that oxidation of the indole ring occurs during the reaction with o-iodosobenzoic acid. Some problems with the quality of commercial preparations of the reagent are discussed.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007463 Iodobenzoates Benzoic acid esters or salts substituted with one or more iodine atoms. Iodobenzoic Acids,Acids, Iodobenzoic
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012709 Serum Albumin A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules. Plasma Albumin,Albumin, Serum

Related Publications

W C Mahoney, and M A Hermodson
March 2007, CSH protocols,
W C Mahoney, and M A Hermodson
January 1983, Methods in enzymology,
W C Mahoney, and M A Hermodson
May 1980, Biochemical and biophysical research communications,
W C Mahoney, and M A Hermodson
September 1977, The Journal of biological chemistry,
W C Mahoney, and M A Hermodson
September 1973, Biochemical and biophysical research communications,
W C Mahoney, and M A Hermodson
December 1972, Biochemistry,
W C Mahoney, and M A Hermodson
March 1974, The Journal of biological chemistry,
Copied contents to your clipboard!