Mode of uptake and degradation of 125I-labelled insulin by isolated hepatocytes and H4 hepatoma cells. 1979

S Terris, and C Hofmann, and D F Steiner

The effects of various agents on the binding and degradation of 125I-labelled insulin by isolated rat hepatocytes and cultured H4 hepatoma cells were studied. Various lysosomotropic agents, including chloroquine, ammonium chloride, and the topical anesthetics, lidocaine and procaine inhibited insulin degradation by H4 hepatoma cells but had little effect on the binding of the hormone. Similarly, tosyl-L-lysyl chloromethyl ketone selectively inhibited the degradation of 125I-labelled insulin by isolated hepatocytes, as did the sulfhydryl reagents, p-hydroxy- and p-chloromercuriphenyl sulfonic acid. Inhibitors of energy production, including sodium fluoride, sodium azide, and dinitrophenol, also selectively inhibited the degradation of insulin by hepatocytes, although cyanide had no effect under the conditions used. Lectins and antimicrotubular agents, which are known to affect the mobility of plasma membrane proteins or of intracytoplasmic vesicles, selectively inhibited insulin degradation by hepatocytes to varying degrees, whereas agents which inhibit the function of microfilaments had no effect. At temperatures below 20 degrees C, insulin degradation was negligible but rose rapidly between 20 and 37 degrees C, suggesting that a membrane-related step is rate limiting in the overall degradative process. These results are all consistent with a model of insulin uptake by target tissue involving pinocytosis of receptor-bound hormone followed by intralysosomal degradation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D010873 Pinocytosis The engulfing of liquids by cells by a process of invagination and closure of the cell membrane to form fluid-filled vacuoles. Pinocytoses
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D003572 Cytochalasins 11- to 14-membered macrocyclic lactones with a fused isoindolone. Members with INDOLES attached at the C10 position are called chaetoglobosins. They are produced by various fungi. Some members interact with ACTIN and inhibit CYTOKINESIS.
D005260 Female Females

Related Publications

S Terris, and C Hofmann, and D F Steiner
June 1980, Biochemical Society transactions,
S Terris, and C Hofmann, and D F Steiner
August 1977, Biochimica et biophysica acta,
S Terris, and C Hofmann, and D F Steiner
August 1973, Biochimica et biophysica acta,
S Terris, and C Hofmann, and D F Steiner
December 1981, Bioscience reports,
S Terris, and C Hofmann, and D F Steiner
November 1975, The Journal of biological chemistry,
S Terris, and C Hofmann, and D F Steiner
October 1992, European journal of biochemistry,
S Terris, and C Hofmann, and D F Steiner
January 1982, The Yale journal of biology and medicine,
Copied contents to your clipboard!