Sarcomere length-resting tension relation in single frog atrial cardiac cells. 1979

M Tarr, and J W Trank, and P Leiffer, and N Shepherd

It generally has been thought that the relatively high resting tension characteristic of cardiac tissue resides in structures (collagen, elastin) external to the individual cardiac cells, but the evidence to support this conclusion has been indirect, since the resting tension of intact single cardiac cells has not been determined previously. The purpose of the present investigation was to determine the resting tension (stress)-sarcomere length relationships of single intact frog atrial cells. For tension determinations, a single cell was attached between two poly-L-lysine coated glass beams; one beam served as a compliant calibrated cantilevered force beam, and length changes were imposed on the cell by movement of the other beam. Coventional bright-field light microscope techniques were used to view the cell, the sarcomere pattern within the cell, and the position of the force beam. The resting tension of the intact cell increased from a value of about 10 nN at a sarcomere length of 2.35 microns to a value of about 130 nN at a sarcomere length of 3.45 microns. Lagrangian and Eulerian resting stress-sarcomere length relationships were computed from the resting tension-sarcomere length relationships. The Lagrangian stress increased from a value of about 0.6 mN/mm2 at a sarcomere length of 2.35 microns to a value of about 7 mN/mm2 at a sarcomere length of 3.45 microns. These values of stress are about 8- to 30-fold less than those previously reported for intact frog atrial tissue and indicate that the resting tension of intact frog atrial preparations resides primarily in structures external to the individual cardiac cell.

UI MeSH Term Description Entries
D008722 Methods A series of steps taken in order to conduct research. Techniques,Methodological Studies,Methodological Study,Procedures,Studies, Methodological,Study, Methodological,Method,Procedure,Technique
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001001 Anura An order of the class Amphibia, which includes several families of frogs and toads. They are characterized by well developed hind limbs adapted for jumping, fused head and trunk and webbed toes. The term "toad" is ambiguous and is properly applied only to the family Bufonidae. Bombina,Frogs and Toads,Salientia,Toad, Fire-Bellied,Toads and Frogs,Anuras,Fire-Bellied Toad,Fire-Bellied Toads,Salientias,Toad, Fire Bellied,Toads, Fire-Bellied
D014743 Videotape Recording Recording of visual and sometimes sound signals on magnetic tape. Tape Recording, Video,Videotapes,Recording, Video Tape,Recording, Videotape,Recordings, Video Tape,Recordings, Videotape,Tape Recordings, Video,Video Tape Recording,Video Tape Recordings,Videotape,Videotape Recordings

Related Publications

M Tarr, and J W Trank, and P Leiffer, and N Shepherd
September 1974, The Journal of general physiology,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
October 1984, Acta physiologica Scandinavica,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
August 1999, Journal of muscle research and cell motility,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
October 1978, The Journal of general physiology,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
May 1970, The American journal of physiology,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
March 1966, The Journal of physiology,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
March 1989, Biophysical journal,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
April 1987, The Journal of physiology,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
July 1988, The Journal of physiology,
M Tarr, and J W Trank, and P Leiffer, and N Shepherd
December 1972, The Journal of physiology,
Copied contents to your clipboard!