Effects of vasoactive intestinal peptide on glycogenolysis in cultured liver cells. 1979

M Matsumura, and H Akiyoshi, and S Saito, and H Mori

When isolated rat liver cells were incubated in the presence of vasoactive intestinal peptide at the concentrations ranging from 0.2 microgram to 2 micrograms per ml, glycogenolysis was maximally stimulated within 15 min. However, somatostatin inhibited the liver glycogenolysis. The combined addition to the incubation medium showed that insulin and somatostatin inhibited the stimulated glycogenolysis induced by vasoactive intestinal peptide, while vasoactive intestinal peptide plus secretin showed no additive effect on glycogenolysis, as compared with single the addition of vasoactive intestinal peptide. On the other hand, the additon of glucagon to vasoactive intestinal peptide showed additive effects on glycogenolysis. These results suggest that the receptor site for vasoactive intestinal peptide may be distinguishable from that for glucagon. Extracellular calcium ions were demonstrated to play an important role in the modulation of vasoactive intestinal peptide-induced glycogenolysis. The evidence presented in this paper indicates that glucose metabolism may be partly regulated by the direct action of vasoactive intestinal peptide on hepatocytes, which is referred to as an enterohepatic axis and that the axis is inhibited by insulin and somatostatin.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008112 Liver Glycogen Glycogen stored in the liver. (Dorland, 28th ed) Hepatic Glycogen,Glycogen, Hepatic,Glycogen, Liver
D008297 Male Males
D010187 Pancreatic Hormones Peptide hormones secreted into the blood by cells in the ISLETS OF LANGERHANS of the pancreas. The alpha cells secrete glucagon; the beta cells secrete insulin; the delta cells secrete somatostatin; and the PP cells secrete pancreatic polypeptide. Hormones, Pancreatic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005768 Gastrointestinal Hormones HORMONES secreted by the gastrointestinal mucosa that affect the timing or the quality of secretion of digestive enzymes, and regulate the motor activity of the digestive system organs. Enteric Hormone,Enteric Hormones,Gastrointestinal Hormone,Intestinal Hormone,Intestinal Hormones,Hormone, Enteric,Hormone, Gastrointestinal,Hormone, Intestinal,Hormones, Enteric,Hormones, Gastrointestinal,Hormones, Intestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D014660 Vasoactive Intestinal Peptide A highly basic, 28 amino acid neuropeptide released from intestinal mucosa. It has a wide range of biological actions affecting the cardiovascular, gastrointestinal, and respiratory systems and is neuroprotective. It binds special receptors (RECEPTORS, VASOACTIVE INTESTINAL PEPTIDE). VIP (Vasoactive Intestinal Peptide),Vasoactive Intestinal Polypeptide,Vasointestinal Peptide,Intestinal Peptide, Vasoactive,Intestinal Polypeptide, Vasoactive,Peptide, Vasoactive Intestinal,Peptide, Vasointestinal,Polypeptide, Vasoactive Intestinal

Related Publications

M Matsumura, and H Akiyoshi, and S Saito, and H Mori
February 1996, Journal of neuroscience research,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
April 2002, Sheng li xue bao : [Acta physiologica Sinica],
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
November 1986, Molecular and cellular endocrinology,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
February 2005, Regulatory peptides,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
January 1993, Visual neuroscience,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
January 2001, Cardiovascular research,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
December 1987, Endocrinology,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
October 1998, Brain research,
M Matsumura, and H Akiyoshi, and S Saito, and H Mori
February 1994, The American journal of physiology,
Copied contents to your clipboard!