Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. 1979

S S Matsumoto, and K O Raivio, and J E Seegmiller

Adenine nucleotide breakdown to nucleosides and purine bases was measured in cultures of human lymphoblastoid cells following: 1) the inhibition of oxidative phosphorylation in the absence of glucose or 2) the addition of 2-deoxyglucose. A mutant cell line, deficient in adenosine kinase, in the presence of an adenosine deaminase inhibitor was used to measure utilization of the two pathways of AMP catabolism involving initial action of either purine 5'-nucleotidase or AMP deaminase. In such a system the appearance of adenosine induced by the oxidative phosphorylation inhibitor, rotenone, implies that approximately 70% of AMP breakdown occurs via dephosphorylation. By the same method, deamination accounts for 82% of AMP breakdown when 2-deoxyglucose is added. The occurrence of AMP dephosphorylation is not correlated with elevated concentrations of substrate or with decreased concentrations of the inhibitors of 5'-nucleotidase, ATP and ADP. Dephosphorylation occurs if, and only if, the adenylate energy charge decreases to about 0.6 in these experiments. In cultures deprived of glucose and oxygen, adenine nucleotide degradation via dephosphorylation results in recovery of normal energy charge values.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

S S Matsumoto, and K O Raivio, and J E Seegmiller
October 1983, Biochimica et biophysica acta,
S S Matsumoto, and K O Raivio, and J E Seegmiller
January 1978, Circulatory shock,
S S Matsumoto, and K O Raivio, and J E Seegmiller
May 1987, Cardiovascular research,
S S Matsumoto, and K O Raivio, and J E Seegmiller
July 1979, Archives of microbiology,
S S Matsumoto, and K O Raivio, and J E Seegmiller
December 1988, Journal of applied physiology (Bethesda, Md. : 1985),
S S Matsumoto, and K O Raivio, and J E Seegmiller
July 1989, Journal of applied physiology (Bethesda, Md. : 1985),
S S Matsumoto, and K O Raivio, and J E Seegmiller
August 1978, Cancer research,
S S Matsumoto, and K O Raivio, and J E Seegmiller
June 1973, Nature: New biology,
S S Matsumoto, and K O Raivio, and J E Seegmiller
April 1993, The American journal of physiology,
Copied contents to your clipboard!