Cutaneous masking. II. Geometry of excitatory andinhibitory receptive fields of single units in somatosensory cortex of the cat. 1979

S E Laskin, and W A Spencer

1. The responses of single neurons in the primary somatosensory cortex of the cat to brief air-pulse stimuli were quantitatively examined. These controlled natural stimuli activated almost exclusively rapidly adapting hair units which, on systematic movement of the stimulus through the receptive field, gave unit-response profiles that showed the classical unimodal tent-shaped distribution. 2. Conditioning stimulus-induced inhibition of a response evoked by a fixed test stimulus was measured by systematically moving the conditioning stimulus through the receptive field. The spatial distribution of in-field inhibitory activity was unimodal and highly covariant with that of the conditioning excitation, the peak inhibition corresponding to the functional center of the excitatory receptive field. 3. Nearly one-half of the units studied evidenced inhibition extending beyond the excitatory receptive field, forming a "surround" inhibitory region; but these were usually restricted areas with rather weak inhibitory effects. 4. Time-course measuring revealed, on the average, inhibition effects measureable from 10 ms before to some 70 ms following conditioning stimulation, with peak inhibition delayed some 10--15 ms from the conditioning stimulus onset. We showed the backward inhibition, occurring with the test stimulus delivered before the onset of the conditioning stimulus, to be a property of the test response duration. Inhibition measured in the surround areas had essentially the same time course as the inhibition calculated from measurements made within the receptive fields. 5. The spatial and temporal profiles of the excitatory and inhibitory cortical unitary activity are thus very similar to the parametric features of psychophysical enhancement and masking. These findings suggest that the excitatory and inhibitory activities related to individual stimuli interact in multipoint stimulus paradigms so that simple unimodal composite profiles are synthesized.

UI MeSH Term Description Entries
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D011601 Psychophysics The science dealing with the correlation of the physical characteristics of a stimulus, e.g., frequency or intensity, with the response to the stimulus, in order to assess the psychologic factors involved in the relationship. Psychophysic
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013003 Somatosensory Cortex Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus. Brodmann Area 1,Brodmann Area 2,Brodmann Area 3,Brodmann Areas 1, 2, 3,Brodmann Areas 1, 2, and 3,Brodmann Areas 3, 1, 2,Brodmann Areas 3, 1, and 2,Brodmann's Area 1,Brodmann's Area 2,Brodmann's Area 3,Brodmann's Areas 1, 2, and 3,Brodmann's Areas 3, 1, and 2,Parietal-Opercular Cortex,Primary Somesthetic Area,S1 Cortex,S2 Cortex,SII Cortex,Anterior Parietal Cortex,Gyrus Postcentralis,Post Central Gyrus,Postcentral Gyrus,Primary Somatic Sensory Area,Primary Somatosensory Area,Primary Somatosensory Areas,Primary Somatosensory Cortex,SI Cortex,Second Somatic Sensory Area,Secondary Sensory Cortex,Secondary Somatosensory Area,Secondary Somatosensory Cortex,Area 1, Brodmann,Area 1, Brodmann's,Area 2, Brodmann,Area 2, Brodmann's,Area 3, Brodmann,Area 3, Brodmann's,Area, Primary Somatosensory,Area, Primary Somesthetic,Area, Secondary Somatosensory,Areas, Primary Somatosensory,Brodmanns Area 1,Brodmanns Area 2,Brodmanns Area 3,Cortex, Anterior Parietal,Cortex, Parietal-Opercular,Cortex, Primary Somatosensory,Cortex, S1,Cortex, S2,Cortex, SI,Cortex, SII,Cortex, Secondary Sensory,Cortex, Secondary Somatosensory,Cortex, Somatosensory,Gyrus, Post Central,Gyrus, Postcentral,Parietal Cortex, Anterior,Parietal Opercular Cortex,Parietal-Opercular Cortices,Primary Somatosensory Cortices,Primary Somesthetic Areas,S1 Cortices,S2 Cortices,SII Cortices,Secondary Somatosensory Areas,Sensory Cortex, Secondary,Somatosensory Area, Primary,Somatosensory Area, Secondary,Somatosensory Areas, Primary,Somatosensory Cortex, Primary,Somatosensory Cortex, Secondary,Somesthetic Area, Primary,Somesthetic Areas, Primary
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014110 Touch Sensation of making physical contact with objects, animate or inanimate. Tactile stimuli are detected by MECHANORECEPTORS in the skin and mucous membranes. Tactile Sense,Sense of Touch,Taction,Sense, Tactile,Senses, Tactile,Tactile Senses,Tactions,Touch Sense,Touch Senses

Related Publications

S E Laskin, and W A Spencer
July 1967, Journal of neurophysiology,
S E Laskin, and W A Spencer
January 1994, Experimental brain research,
S E Laskin, and W A Spencer
April 1971, The Japanese journal of physiology,
Copied contents to your clipboard!