Sulfhydryl reactivity: mechanism of action of several antiviral compounds--selenocystine, 4-(2-propinyloxy)-beta-nitrostyrene, and acetylaranotin. 1974

W Billard, and E Peets

The addition of 5 mM dithiothreitol to a cell-free assay system for influenza ribonucleic acid (RNA) polymerase activity reverses the inhibitory activity otherwise possessed by three established antiviral compounds: selenocystine, 4-(2-propinyloxy)-beta-nitrostyrene, and acetylaranotin. Although 50% or greater enzyme inhibitory activity is repeatedly achieved for these compounds at a concentration of approximately 50 mug/ml (0.1 to 0.25 mM) in the absence of dithiothreitol, no inhibition is seen in its presence at inhibitor concentrations as high as 200 mug/ml. Against the deoxyribonucleic acid-directed RNA polymerases of Escherichia coli and chicken embryo cells, acetylaranotin and 4-(2-propinyloxy)-beta-nitrostyrene caused very little inhibition. Only selenocystine significantly inhibited these two enzymes in the absence of reducing agent, but to an extent substantially less than that obtained against the viral enzyme. These results appear to suggest that influenza RNA polymerase is uniquely sensitive to a variety of structurally diverse antiviral compounds as a consequence of their sulfhydryl reactivity-a fact which might aid in the search for and development of more potent chemotherapeutic agents.

UI MeSH Term Description Entries
D009574 Nitro Compounds Compounds having the nitro group, -NO2, attached to carbon. When attached to nitrogen they are nitramines and attached to oxygen they are NITRATES. Nitrated Compounds
D009975 Orthomyxoviridae A family of RNA viruses causing INFLUENZA and other respiratory diseases. Orthomyxoviridae includes INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; INFLUENZAVIRUS D; ISAVIRUS; and THOGOTOVIRUS. Influenza Viruses,Myxoviruses,Orthomyxoviruses,Influenza Virus,Myxovirus,Orthomyxovirus
D010082 Oxepins Compounds based on a 7-membered heterocyclic ring including an oxygen. They can be considered a medium ring ether. A natural source is the MONTANOA plant genus. Some dibenzo-dioxepins, called depsidones, are found in GARCINIA plants. Oxepene,Oxepenes,Oxepin
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D003553 Cystine A covalently linked dimeric nonessential amino acid formed by the oxidation of CYSTEINE. Two molecules of cysteine are joined together by a disulfide bridge to form cystine. Copper Cystinate,L-Cystine,L Cystine
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D000480 Alkynes Hydrocarbons with at least one triple bond in the linear portion, of the general formula Cn-H2n-2. Acetylenic Compounds,Alkyne,Acetylenes

Related Publications

W Billard, and E Peets
September 2006, Acta crystallographica. Section C, Crystal structure communications,
W Billard, and E Peets
October 1965, Archives of biochemistry and biophysics,
W Billard, and E Peets
October 1972, Antimicrobial agents and chemotherapy,
W Billard, and E Peets
March 1979, European journal of pharmacology,
W Billard, and E Peets
February 1973, Antimicrobial agents and chemotherapy,
W Billard, and E Peets
August 1974, Journal of medicinal chemistry,
Copied contents to your clipboard!