A kinetic evaluation of monoamine oxidase activity in rat liver mitochondrial outer membranes. 1974

M D Houslay, and K F Tipton

1. A preparation of mitochondrial outer membranes from rat liver can be shown to contain two kinetically distinct monoamine oxidase activities. These activities are distinguishable by their different sensitivities to the irreversible inhibitor clorgyline, and by the effect of the reversible inhibitors benzyl cyanide and 4-cyanophenol. 2. The substrate specificities of the preparation and the two enzyme species have been elucidated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D008996 Monoamine Oxidase Inhibitors A chemically heterogeneous group of drugs that have in common the ability to block oxidative deamination of naturally occurring monoamines. (From Gilman, et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p414) MAO Inhibitor,MAO Inhibitors,Reversible Inhibitors of Monoamine Oxidase,Monoamine Oxidase Inhibitor,RIMA (Reversible Inhibitor of Monoamine Oxidase A),Reversible Inhibitor of Monoamine Oxidase,Inhibitor, MAO,Inhibitor, Monoamine Oxidase,Inhibitors, MAO,Inhibitors, Monoamine Oxidase
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010636 Phenols Benzene derivatives that include one or more hydroxyl groups attached to the ring structure.
D010647 Phenyl Ethers Ethers that are linked to a benzene ring structure. Diphenyl Oxide,Diphenyl Oxides,Diphenyl Ethers,Ethers, Diphenyl,Ethers, Phenyl,Oxide, Diphenyl,Oxides, Diphenyl
D011437 Propylamines Derivatives of propylamine (the structural formula NH2CH2CH2CH3).

Related Publications

M D Houslay, and K F Tipton
July 1978, Archives of biochemistry and biophysics,
M D Houslay, and K F Tipton
January 1980, The Journal of pharmacy and pharmacology,
M D Houslay, and K F Tipton
December 1982, Biochemical and biophysical research communications,
M D Houslay, and K F Tipton
March 1968, Bulletin de la Societe de chimie biologique,
M D Houslay, and K F Tipton
October 1978, Archives of biochemistry and biophysics,
M D Houslay, and K F Tipton
September 1988, FEBS letters,
M D Houslay, and K F Tipton
November 1975, Biochemical pharmacology,
M D Houslay, and K F Tipton
January 1971, The Biochemical journal,
M D Houslay, and K F Tipton
October 1968, The Journal of biological chemistry,
M D Houslay, and K F Tipton
April 1970, The Biochemical journal,
Copied contents to your clipboard!