A kinetic study of pig liver pyruvate kinase activated by fructose diphosphate. 1974

N Macfarlane, and S Ainsworth

The paper reports a study of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by pig liver pyruvate kinase when activated by fructose diphosphate and K(+). The experimental results are consistent with two non-sequential mechanisms in which the substrates and products of the reaction are phosphoenolpyruvate, ADP, Mg(2+), pyruvate and MgATP. Pyruvate release occurs before ADP binding. Two Mg(2+) ions are involved, though the two Mg(2+)-binding sites cannot be occupied simultaneously. An isomerized enzyme complex forms before release of MgATP. Values were determined for the Michaelis constants of the reaction. Apparent MgATP inhibition constants are also given.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D010728 Phosphoenolpyruvate A monocarboxylic acid anion derived from selective deprotonation of the carboxy group of phosphoenolpyruvic acid. It is a metabolic intermediate in GLYCOLYSIS; GLUCONEOGENESIS; and other pathways.
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011770 Pyruvate Kinase ATP:pyruvate 2-O-phosphotransferase. A phosphotransferase that catalyzes reversibly the phosphorylation of pyruvate to phosphoenolpyruvate in the presence of ATP. It has four isozymes (L, R, M1, and M2). Deficiency of the enzyme results in hemolytic anemia. EC 2.7.1.40. L-Type Pyruvate Kinase,M-Type Pyruvate Kinase,M1-Type Pyruvate Kinase,M2-Type Pyruvate Kinase,Pyruvate Kinase L,R-Type Pyruvate Kinase,L Type Pyruvate Kinase,M Type Pyruvate Kinase,M1 Type Pyruvate Kinase,M2 Type Pyruvate Kinase,Pyruvate Kinase, L-Type,Pyruvate Kinase, M-Type,Pyruvate Kinase, M1-Type,Pyruvate Kinase, M2-Type,Pyruvate Kinase, R-Type,R Type Pyruvate Kinase
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations

Related Publications

N Macfarlane, and S Ainsworth
February 1967, The Biochemical journal,
N Macfarlane, and S Ainsworth
April 1967, Biochemical and biophysical research communications,
N Macfarlane, and S Ainsworth
January 1971, European journal of biochemistry,
N Macfarlane, and S Ainsworth
January 1968, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
N Macfarlane, and S Ainsworth
November 1981, Molecular and biochemical parasitology,
N Macfarlane, and S Ainsworth
January 1968, Advances in enzyme regulation,
N Macfarlane, and S Ainsworth
January 1970, FEBS letters,
Copied contents to your clipboard!