Effects of light intensity on membrane differentiation in Rhodopseudomonas capsulata. 1979

A Schumacher, and G Drews

Cells of Rhodopseudomonas capsulata, strain 37b4, leu-, precultivated anaerobically under low light intensity, were exposed to high light intensity (2000 W.m-2). The cells grew with a mass doubling time of 3 h. The synthesis of bacteriochlorophyll (BChl) began after two doublings of cell mass. Reaction center and light-harvesting BChl I (B-875) were the main constituents of the photosynthetic apparatus incorporated into the membrane. The size of the photosynthetic unit (total BChl/reaction center) decreased and light-harvesting BChl I became the dominating BChl species. Concomitant with the appearance of the different spectral forms of BChl the respective proteins were incorporated into the membrane, i.e. the three reaction center polypeptides, the polypeptide associated with light-harvesting BChl I, the two polypeptides associated with BChl II. A polypeptide of an apparent molecular weight of 45 000 was also incorporated. A lowering of the light intensity to 7 W.m-2 resulted in a lag phase of growth for 6 h. Afterwards, the time for doubling of cell mass was 11 h. The concentration of all three BChl complexes (reaction center, light-harvesting BChl I and II complexes)/cell and per membrane protein increased immediately. Also the size of the photosynthetic unit and the amount of intracytoplasmic membranes/cell increased. The activities of photophosphorylation, succinate dehydrogenase, NADH dehydrogenase and NADH oxidation (respiratory chain)/membrane protein are higher in membrane preparations isolated from cells grown at high light intensities than in such preparations from cells grown at low light intensities.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D010785 Photophosphorylation The use of light to convert ADP to ATP without the concomitant reduction of dioxygen to water as occurs during OXIDATIVE PHOSPHORYLATION in MITOCHONDRIA. Photosynthetic Phosphorylation,Phosphorylation, Photosynthetic,Phosphorylations, Photosynthetic,Photophosphorylations,Photosynthetic Phosphorylations
D002734 Chlorophyll Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms. Phyllobilins,Chlorophyll 740
D001429 Bacteriochlorophylls Pyrrole containing pigments found in photosynthetic bacteria. Bacteriochlorophyll
D012241 Rhodopseudomonas A genus of gram-negative, rod-shaped, phototrophic bacteria found in aquatic environments. Internal photosynthetic membranes are present as lamellae underlying the cytoplasmic membrane.
D013385 Succinate Dehydrogenase A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II. Succinic Oxidase,Fumarate Reductase,Succinic Dehydrogenase,Dehydrogenase, Succinate,Dehydrogenase, Succinic,Oxidase, Succinic,Reductase, Fumarate

Related Publications

A Schumacher, and G Drews
May 1972, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie,
A Schumacher, and G Drews
December 1977, Archives of biochemistry and biophysics,
A Schumacher, and G Drews
January 1970, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. 1. Abt. Medizinisch-hygienische Bakteriologie, Virusforschung und Parasitologie. Originale,
A Schumacher, and G Drews
October 1970, Proceedings of the National Academy of Sciences of the United States of America,
A Schumacher, and G Drews
October 1978, Journal of bacteriology,
A Schumacher, and G Drews
November 1975, Archives of microbiology,
A Schumacher, and G Drews
December 1982, Photosynthesis research,
A Schumacher, and G Drews
March 1974, Proceedings of the National Academy of Sciences of the United States of America,
A Schumacher, and G Drews
January 1984, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!