Influence of midbrain stimulation on the excitability of neurons in the medial hypothalamus of the rat. 1979

Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud

Extracellular action potentials were recorded from 1098 neurons in the medial hypothalamus of pentobarbital anesthetized male rats. Their excitability was analyzed after single 1 Hz stimulation of the midbrain periaqueductal gray (PAG) or adjacent reticular formation. Cells were also examined for their response to median eminence (ME), amygdala, lateral septum (LS) or anterior hypothalamic/preoptic area (AHA/POA) stimulation. Antidromic invasion from midbrain stimulation was recorded from 110 neurons. Eight of these neurons showed features of axon branching and displayed antidromic invasion from both midbrain and amygdala (2 cells) or AHA/POA (6 cells). Many neurons with midbrain projections displayed orthodromic responses to stimulation in the amygdala, but few responded to AHA/POA or LS stimulation. Midbrain stimulation evoked orthodromic responses from 99 medial hypothalamic neurons. Many of these cells also displayed orthodromic responses to amygdala or AHA/POA stimulation, whereas a small number were activated antidromically by stimulation in these sites. None of 42 neurons activated antidromically from median eminence stimulation were responsive to midbrain stimulation. These results provide electrophysiological evidence of reciprocal connections between medial hypothalamic and medial midbrain areas, and indicate that medial hypothalamic neurons with midbrain connections are subject to influences from other extrahypothalamic areas.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007032 Hypothalamus, Anterior The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS. Hypothalamus, Supraoptic,Anterior Hypothalamic Commissure,Anterior Hypothalamic Decussation of Ganser,Anteroventral Periventricular Nucleus,Anterior Hypothalamic Commissures,Anterior Hypothalamus,Commissure, Anterior Hypothalamic,Commissures, Anterior Hypothalamic,Hypothalamic Commissure, Anterior,Hypothalamic Commissures, Anterior,Nucleus, Anteroventral Periventricular,Periventricular Nucleus, Anteroventral,Supraoptic Hypothalamus
D007033 Hypothalamus, Middle Middle portion of the hypothalamus containing the arcuate, dorsomedial, ventromedial nuclei, the TUBER CINEREUM and the PITUITARY GLAND. Hypothalamus, Medial,Intermediate Hypothalamic Region,Hypothalamic Region, Intermediate,Hypothalamic Regions, Intermediate,Intermediate Hypothalamic Regions,Medial Hypothalamus,Middle Hypothalamus,Region, Intermediate Hypothalamic,Regions, Intermediate Hypothalamic
D008297 Male Males
D008473 Median Eminence Raised area at the infundibular region of the HYPOTHALAMUS at the floor of the BRAIN, ventral to the THIRD VENTRICLE and adjacent to the ARCUATE NUCLEUS OF HYPOTHALAMUS. It contains the terminals of hypothalamic neurons and the capillary network of hypophyseal portal system, thus serving as a neuroendocrine link between the brain and the PITUITARY GLAND. Eminentia Mediana,Medial Eminence,Eminence, Medial,Eminence, Median,Eminences, Medial,Eminentia Medianas,Medial Eminences,Mediana, Eminentia,Medianas, Eminentia
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
December 1981, Neuroendocrinology,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
January 1996, Neuroscience and behavioral physiology,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
March 2008, Experimental brain research,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
January 1985, Experimental brain research,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
January 1983, Cell and tissue research,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
April 1983, Brain research bulletin,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
January 1995, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
September 1983, Neuroendocrinology,
Q J Pittman, and H W Blume, and R E Kearney, and L P Renaud
January 1977, The Journal of physiology,
Copied contents to your clipboard!