Involvement of catecholaminergic nerve fibers in angiotensin II-induced drinking in the Japanese quail, Coturnix coturnix japonica. 1979

Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando

Monamine distribution in a septohypothalamic area was investigated in the Japanese quail using a histochemical fluorescence method. This area includes the subfornical organ (SFO) and the preoptic area (POA) which are inferred dipsogenic receptor sites for angiotensin II (AII) in the Japanese quail. Nerve fibers showing yellow-green fluorescence were found between the POA and the SFO. Thwy traversed from the POA to the SFO, and some fibers seemed to terminate on the neurons in the SFO. After a low dose of reserpine, a considerable number of fluorescent perikarya were found in the POA. These fibers and perikarya appeared to be of primary catecholamine judging from the fluorescence color. Following transection of these fibers, fluorescence disappeared from the fibers located on the SFO side of the transection plane, while it became a little more intense on the POA side. After transection, microinjection of AII into the POA was no longer effective in induction of drinking. On the other hand, sham operation or transection in areas other than between the POA and the SFO produced only minute changes in those fluorescent fibers and had little effect on the dipsogenic potency of AII injected into the POA. These results suggest that information of AII perceived at the POA is transferred to the SFO via those primary catecholamine-containing nerve fibers, which effect induced drinking.

UI MeSH Term Description Entries
D007032 Hypothalamus, Anterior The front portion of the HYPOTHALAMUS separated into the preoptic region and the supraoptic region. The preoptic region is made up of the periventricular GRAY MATTER of the rostral portion of the THIRD VENTRICLE and contains the preoptic ventricular nucleus and the medial preoptic nucleus. The supraoptic region contains the PARAVENTRICULAR HYPOTHALAMIC NUCLEUS, the SUPRAOPTIC NUCLEUS, the ANTERIOR HYPOTHALAMIC NUCLEUS, and the SUPRACHIASMATIC NUCLEUS. Hypothalamus, Supraoptic,Anterior Hypothalamic Commissure,Anterior Hypothalamic Decussation of Ganser,Anteroventral Periventricular Nucleus,Anterior Hypothalamic Commissures,Anterior Hypothalamus,Commissure, Anterior Hypothalamic,Commissures, Anterior Hypothalamic,Hypothalamic Commissure, Anterior,Hypothalamic Commissures, Anterior,Nucleus, Anteroventral Periventricular,Periventricular Nucleus, Anteroventral,Supraoptic Hypothalamus
D008297 Male Males
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D011301 Preoptic Area Region of hypothalamus between the ANTERIOR COMMISSURE and OPTIC CHIASM. Area Preoptica,Lateral Preoptic Area,Medial Preoptic Area,Preoptic Nuclei,Area Preopticas,Area, Lateral Preoptic,Area, Medial Preoptic,Area, Preoptic,Areas, Lateral Preoptic,Areas, Medial Preoptic,Areas, Preoptic,Lateral Preoptic Areas,Medial Preoptic Areas,Nuclei, Preoptic,Nucleus, Preoptic,Preoptic Area, Lateral,Preoptic Area, Medial,Preoptic Areas,Preoptic Areas, Lateral,Preoptic Areas, Medial,Preoptic Nucleus,Preoptica, Area,Preopticas, Area
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese

Related Publications

Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
November 1984, General and comparative endocrinology,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
April 1985, General and comparative endocrinology,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
January 2003, Avian diseases,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
October 1971, British poultry science,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
December 1977, Cell and tissue research,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
March 1977, General and comparative endocrinology,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
April 1964, Endocrinology,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
August 2004, The Veterinary record,
Y Takei, and H Kobayashi, and M Yanagisawa, and T Bando
January 1974, Poultry science,
Copied contents to your clipboard!