Autoradiographic localization of 3H-glucocorticoids and 3H-cortexolone in mouse pituitary. 1979

M Coutard, and M J Osborne-Pellegrin, and J Funder

Autoradiograms of mouse pituitaries were prepared 30 min after injection of 3H-dexamethasone (3HDM), 3H-corticosterone (3HB) and 3H-cortexolone (3HS) either alone or in the presence of competing unlabelled steroids. 3H-dexamethasone accumulated in cell nuclei of both the pars distalis and the pars nervosa but not in those of the pars intermedia. This preferential accumulation (nuclear/cytoplasmic grain density, 4 : 1) was abolished by the concurrent administration of excess dexamethasone. 3H-corticosterone, to a much less marked extent than 3H-dexamethasone, accumulated in cell nuclei of the pars distalis but not in those of the pars intermedia and the pars nervosa. Excess unlabelled corticosterone diminished nuclear grain density in the pars distalis. After 3-h-cortexolone injection, preferential nuclear uptake was not observed. In a second series of experiments, excess dexamethasone (10 x, 100 x), corticosterone (100 x, 300 x) and cortexolone (100 x, 300 x) administered with 3H-dexamethasone were without effect on cytoplasmic grain density but totally abolished preferential nuclear accumulation. Parallel biochemical studies on kidney cytoplasmic preparations from the same animals showed no differences in total cytoplasmic radioactivity between treatments but marked differences in cytoplasmic bound 3H-dexamethasone. The results demonstrate: i) that dexamethasone binds specifically to cell nuclei of the pars distalis and the pars nervosa and that this nuclear concentration is abolished by competing corticosterone and cortexolone as well as dexamethasone; ii) that corticosterone localizes in cell nuclei of the pars distalis but much less markedly than dexamethasone; iii) that cortexolone fullfils the criteria of a glucocorticoid antagonist at the pituitary cell level.

UI MeSH Term Description Entries
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D010904 Pituitary Gland, Posterior Neural tissue of the pituitary gland, also known as the neurohypophysis. It consists of the distal AXONS of neurons that produce VASOPRESSIN and OXYTOCIN in the SUPRAOPTIC NUCLEUS and the PARAVENTRICULAR NUCLEUS. These axons travel down through the MEDIAN EMINENCE, the hypothalamic infundibulum of the PITUITARY STALK, to the posterior lobe of the pituitary gland. Neurohypophysis,Infundibular Process,Lobus Nervosus,Neural Lobe,Pars Nervosa of Pituitary,Posterior Lobe of Pituitary,Gland, Posterior Pituitary,Infundibular Processes,Lobe, Neural,Lobes, Neural,Nervosus, Lobus,Neural Lobes,Pituitary Pars Nervosa,Pituitary Posterior Lobe,Posterior Pituitary Gland,Posterior Pituitary Glands,Process, Infundibular,Processes, Infundibular
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003350 Cortodoxone 17,21-Dihydroxypregn-4-ene-3,20-dione. A 17-hydroxycorticosteroid with glucocorticoid and anti-inflammatory activities. 11-Deoxycortisol,11-Desoxycortisone,Cortexolone,11-Desoxycortisol,Reichstein's Substance S,11 Deoxycortisol,11 Desoxycortisol,11 Desoxycortisone,Reichstein Substance S,Reichsteins Substance S,Substance S, Reichstein's
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Coutard, and M J Osborne-Pellegrin, and J Funder
January 1996, Methods and findings in experimental and clinical pharmacology,
M Coutard, and M J Osborne-Pellegrin, and J Funder
April 1970, Cancer research,
M Coutard, and M J Osborne-Pellegrin, and J Funder
December 1975, Brain research,
M Coutard, and M J Osborne-Pellegrin, and J Funder
July 1990, Human reproduction (Oxford, England),
M Coutard, and M J Osborne-Pellegrin, and J Funder
February 1990, Human reproduction (Oxford, England),
M Coutard, and M J Osborne-Pellegrin, and J Funder
November 1985, Brain research bulletin,
M Coutard, and M J Osborne-Pellegrin, and J Funder
June 1971, Endocrinologia experimentalis,
M Coutard, and M J Osborne-Pellegrin, and J Funder
January 1980, Experimental brain research,
M Coutard, and M J Osborne-Pellegrin, and J Funder
January 1973, Histochemie. Histochemistry. Histochimie,
Copied contents to your clipboard!