Purification and properties of alanine dehydrogenase from Bacillus sphaericus. 1979

T Ohashima, and K Soda

1. The bacterial distribution of alanine dehydrogenase (L-alanine:NAD+ oxidoreductase, deaminating, EC 1.4.1.1) was investigated, and high activity was found in Bacillus species. The enzyme has been purified to homogeneity and crystallized from B. sphaericus (IFO 3525), in which the highest activity occurs. 2. The enzyme has a molecular weight of about 230 000, and is composed of six identical subunits (Mr 38 000). 3. The enzyme acts almost specifically on L-alanine, but shows low amino-acceptor specificity; pyruvate and 2-oxobutyrate are the most preferable substrates, and 2-oxovalerate is also animated. The enzyme requires NAD+ as a cofactor, which cannot be replaced by NADP+. 4. The enzyme is stable over a wide pH range (pH 6.0--10.0), and shows maximum reactivity at approximately pH 10.5 and 9.0 for the deamination and amination reactions, respectively. 5. Alanine dehydrogenase is inhibited significantly by HgCl2, p-chloromercuribenzoate and other metals, but none of purine and pyrimidine bases, nucleosides, nucleotides, flavine compounds and pyridoxal 5'-phosphate influence the activity. 6. The reductive amination proceeds through a sequential ordered ternary-binary mechanism. NADH binds first to the enzyme followed by ammonia and pyruvate, and the products are released in the order of L-ALANINE AND NAD+. The Michaelis constants are as follows: NADH (10 microM), ammonia (28.2 mM), pyruvate (1.7 mM), L-alanine (18.9 mM) and NAD+ (0.23 mM). 7. The pro-R hydrogen at C-4 of the reduced nicotinamide ring of NADH is exclusively transferred to pyruvate; the enzyme is A-stereospecific.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000594 Amino Acid Oxidoreductases A class of enzymes that catalyze oxidation-reduction reactions of amino acids. Acid Oxidoreductases, Amino,Oxidoreductases, Amino Acid
D001407 Bacillus A genus of BACILLACEAE that are spore-forming, rod-shaped cells. Most species are saprophytic soil forms with only a few species being pathogenic. Bacillus bacterium
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

T Ohashima, and K Soda
August 1977, Chemical & pharmaceutical bulletin,
T Ohashima, and K Soda
August 1978, The Journal of biological chemistry,
T Ohashima, and K Soda
December 1975, The Journal of antibiotics,
T Ohashima, and K Soda
January 1989, European journal of biochemistry,
T Ohashima, and K Soda
October 1990, Biochimica et biophysica acta,
T Ohashima, and K Soda
February 1998, Wei sheng wu xue bao = Acta microbiologica Sinica,
T Ohashima, and K Soda
September 1979, Biochimica et biophysica acta,
T Ohashima, and K Soda
November 1980, The Journal of biological chemistry,
Copied contents to your clipboard!