Antibiotic sensitivity of pathogenic microorganisms. 1968

S Burrows, and D Gottesman

UI MeSH Term Description Entries
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria
D001431 Bacteriological Techniques Techniques used in studying bacteria. Bacteriologic Technic,Bacteriologic Technics,Bacteriologic Techniques,Bacteriological Technique,Technic, Bacteriological,Technics, Bacteriological,Technique, Bacteriological,Techniques, Bacteriological,Bacteriologic Technique,Bacteriological Technic,Bacteriological Technics,Technic, Bacteriologic,Technics, Bacteriologic,Technique, Bacteriologic,Techniques, Bacteriologic

Related Publications

S Burrows, and D Gottesman
February 1967, Hospital (Rio de Janeiro, Brazil),
S Burrows, and D Gottesman
March 1987, Antibiotiki i meditsinskaia biotekhnologiia = Antibiotics and medical biotechnology,
S Burrows, and D Gottesman
May 1961, Antibiotiki,
S Burrows, and D Gottesman
March 1981, Orvosi hetilap,
S Burrows, and D Gottesman
September 1957, Minerva dermatologica,
S Burrows, and D Gottesman
July 1970, New York state journal of medicine,
S Burrows, and D Gottesman
February 1965, New York state journal of medicine,
S Burrows, and D Gottesman
January 1972, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
S Burrows, and D Gottesman
May 2007, Georgian medical news,
Copied contents to your clipboard!