Molecular aspects of lens cell differentiation. 1967

J Papaconstantinou

I have presented a series of observations on macromolecular interactions which occur during the terminal stages of lens cell differentiation. These are summarized in Fig. 2. Other cell types that undergo similar changes are the erythrocyte and skin cells (epidermis) during the process of keratinization. These other cells are also involved in the synthesis of highly specific proteins, and there are indications that molecular alterations similar to those described for the lens may also occur in these cells (26). Thus, elucidation of a specific series of macromolecular initeractions such as those described may provide a basis for the biochemical definition of the terminal stages of cellular differentiation. Differentiation of the reticulocyte, for example, involves inactivation of the nucleus, stabilization of mRNA, and possibly a ribosomal breakdown such as I have described here (26). Furthermore, elucidation of the mechanisms of reactions involving the initiation of tissue-specific protein synthesis and suLbsequent nuclear inactivation, stabilization of mRNA, and breakdown of the ribosomes may provide a basis for defining the mechanisms of terminal cellular differentiation. The lens cell has reached its highest form of cellular differentiation when it has formed the fiber cell. With respect to the mechanism of lens fiber cell formation, we would like to know whether specific biochemical changes such as gamma-crystallin synthesis are intiniately linked to fiber cell formation-that is, whether gamma-crystallins are required to bring about the formation of a fiber cell. The potential for synthesizing gamma-crystallins is inherent in the genome of the cell. This part of the genome is nonfunctional in the epithelial cell. Can these genes be activated without bringing about a simultaneous cellular elongation, nuclear inactivation and loss of cellular replication, stabilization of mRNA, and breakdown of the ribosomes? The degree of coupling or uncoupling of tissue-specific-protein synthesis to morphogenesis is an important part of the mechanism of cellular differentiation. We feel that we have now reached the stage where we can begin to answer these questions.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008967 Molecular Biology A discipline concerned with studying biological phenomena in terms of the chemical and physical interactions of molecules. Biochemical Genetics,Biology, Molecular,Genetics, Biochemical,Genetics, Molecular,Molecular Genetics,Biochemical Genetic,Genetic, Biochemical,Genetic, Molecular,Molecular Genetic
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens

Related Publications

J Papaconstantinou
April 1969, Experimental eye research,
J Papaconstantinou
January 2000, British medical bulletin,
J Papaconstantinou
January 1987, Advances in experimental medicine and biology,
J Papaconstantinou
November 2002, Experimental eye research,
J Papaconstantinou
February 2002, Current molecular medicine,
J Papaconstantinou
December 1995, European heart journal,
J Papaconstantinou
November 2010, Progress in retinal and eye research,
J Papaconstantinou
January 1988, Progress in clinical and biological research,
J Papaconstantinou
February 1971, Experimental cell research,
J Papaconstantinou
January 1982, International review of cytology,
Copied contents to your clipboard!