Superstructural differences between chromatin in nuclei and in solution are revealed by kinetics of micrococcal nuclease digestion. 1979

L F Levinger, and C W Carter

Digestion of chromatin in nuclei by micrococcal nuclease, measured as the change in the concentration of monomer-length DNA with time, displays Michaelis-Menten kinetics. Redigestion of soluble chromatin prepared from nuclei by micrococcal nuclease treatment, however, is apparently first order in enzyme and independent of chromatin concentration. This qualitative difference results from an increase in the apparent second order rate constant, kcat/Km, for liberation of monomer DNA: the apparent Km for soluble chromatin is lower by close to 3 orders of magnitude than that for chromatin in nuclei, whereas kcat decreases by less than 1 order of magnitude. Neither the integrity of the nuclear membrane nor the presence of histone H1 contributes to the high Michaelis constant characteristic of chromatin in nuclei. Moreover, differences due to the buffers used for digestion and redigestion are minimal. Low catalytic efficiency is, however, correlated with the presence of higher order chromatin superstructure. Micrococcal nuclease added to soluble chromatin under nondigesting conditions at low ionic strength (I = 0.002) co-sediments with chromatin in sucrose gradients. In 0.15 M NaCl, added nuclease no longer sediments with chromatin and redigestion kinetics become first order in both enzyme and substrate. Kinetic analysis of this type may afford an assay for native, higher order structures in chromatin. Our results suggest that micrococcal nuclease binds to soluble chromatin through additional interactions not present in nuclei, which may be partly ionic in nature.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008836 Micrococcal Nuclease An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1. Staphylococcal Nuclease,TNase,Thermonuclease,Thermostable Nuclease,Nuclease, Micrococcal,Nuclease, Staphylococcal,Nuclease, Thermostable
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012996 Solutions The homogeneous mixtures formed by the mixing of a solid, liquid, or gaseous substance (solute) with a liquid (the solvent), from which the dissolved substances can be recovered by physical processes. (From Grant & Hackh's Chemical Dictionary, 5th ed) Solution
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

L F Levinger, and C W Carter
January 1986, Cellular and molecular biology,
L F Levinger, and C W Carter
January 1982, Molekuliarnaia biologiia,
L F Levinger, and C W Carter
November 2016, Cold Spring Harbor protocols,
L F Levinger, and C W Carter
September 1987, Shi yan sheng wu xue bao,
L F Levinger, and C W Carter
January 2016, Methods in molecular biology (Clifton, N.J.),
L F Levinger, and C W Carter
March 1977, Molecular biology reports,
L F Levinger, and C W Carter
May 1980, The Biochemical journal,
L F Levinger, and C W Carter
October 1983, Biochemical and biophysical research communications,
Copied contents to your clipboard!