Steady state and pre-steady state kinetic properties of rat liver selenium-glutathione peroxidase. 1979

A G Splittgerber, and A L Tappel

The kinetic properties of partially purified rat liver selenium-glutathione peroxidase were studied under various conditions. Steady state kinetic measurements show sigmoidal saturation curves, parabolic double reciprocal plots, and Hill coefficients greater than unity. Although these kinetic results appear to show cooperative interactions between subunits, they more reflect the presence of several oxidation-reduction forms of the catalytic site. A substrate-induced transition between enzyme forms was evidence by the occurrence of a lag in the attainment of the final steady state velocity under certain preincubation conditions. This hysteretic behavior was evident only when the enzyme was incubated in the absence of reduced glutathione, the donor substrate. Thus, reduced glutathione induces the transition to the fully active form of the enzyme, a slow process requiring about 0.5 min after addition of glutathione, depending on conditions. The length, tau, of the lag period is dependent on the concentrations of enzyme and glutathione, but to a first approximation, this lag period is independent of the concentration of the hydroperoxide acceptor substrate. The lag period is also relatively independent of the nature of the hydroperoxide species. A model for the transition process that is compatible with these observations and with the possible oxidation-reduction properties of the selenium moiety of the enzyme is suggested.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010544 Peroxidases Ovoperoxidase
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D005979 Glutathione Peroxidase An enzyme catalyzing the oxidation of 2 moles of GLUTATHIONE in the presence of HYDROGEN PEROXIDE to yield oxidized glutathione and water. Cytosolic Glutathione Peroxidase,Glutathione Lipoperoxidase,Selenoglutathione Peroxidase,Glutathione Peroxidase, Cytosolic,Lipoperoxidase, Glutathione,Peroxidase, Glutathione,Peroxidase, Selenoglutathione
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012643 Selenium An element with the atomic symbol Se, atomic number 34, and atomic weight 78.97. It is an essential micronutrient for mammals and other animals but is toxic in large amounts. Selenium protects intracellular structures against oxidative damage. It is an essential component of GLUTATHIONE PEROXIDASE. Selenium-80,Selenium 80
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

A G Splittgerber, and A L Tappel
August 1976, Biochemical and biophysical research communications,
A G Splittgerber, and A L Tappel
January 1984, Current topics in cellular regulation,
A G Splittgerber, and A L Tappel
August 1992, The Journal of nutrition,
A G Splittgerber, and A L Tappel
August 2012, Biochemical and biophysical research communications,
A G Splittgerber, and A L Tappel
November 1991, The Journal of biological chemistry,
A G Splittgerber, and A L Tappel
January 1990, The Journal of biological chemistry,
A G Splittgerber, and A L Tappel
September 1978, Biochimica et biophysica acta,
A G Splittgerber, and A L Tappel
June 1989, Revista espanola de fisiologia,
A G Splittgerber, and A L Tappel
June 1974, Biochemical and biophysical research communications,
Copied contents to your clipboard!