The afferent connections and laminar distribution of cells in the cat striate cortex. 1979

G H Henry, and A R Harvey, and J S Lund

A laminar distribution of different functional cell types in the striate cortex of the cat is drawn up from the visual responses of single cells recorded in 64 electrode penetrations in 38 cats. In summary, S cells were found to be concentrated in laminae 4 and 6; SH cells in laminae 2, 3 and 4; C cells in laminae 5 and lower 3; B cells in laminae 3 and upper 5 and cells with non-oriented receptive fields in lamina 4. In addition, the nature of afferent innervation to striate neurons was derived from the latency of the orthodromic response to electrical stimulation in the optic chiasm and optic radiations in 19 cats. An analysis of latency values allowed the afferent innervation to a cell to be classed as belonging either to fast or slow conducting streams in the population of dLGN axons and also permitted a decision to be made on whether or not the afferent path passed directly to the cell. Direct afferent innervation from the dLGN was not found to be confined to a single class of striate neuron. Instead, examples of cells with S, SH, C, B and non-oriented receptive fields all had orthodromic latencies that met the requirement for direct innervation. Instances of cells with orthodromic latencies suggestive of indirect innervation were also found for most receptive field classes but these cells were encountered less frequently than those with a direct afferent input. It is argued that a variety of different cell types may act as first order neurons in the striate cortex and that cells occurring at later stages in the sequence of cortical processing may have been incompletely studied because they are more difficult to stimulate either visually or electrically.

UI MeSH Term Description Entries
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014785 Vision, Ocular The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain. Vision,Light Signal Transduction, Visual,Ocular Vision,Visual Light Signal Transduction,Visual Phototransduction,Visual Transduction,Phototransduction, Visual,Transduction, Visual
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

G H Henry, and A R Harvey, and J S Lund
September 1979, Journal of neurophysiology,
G H Henry, and A R Harvey, and J S Lund
September 1975, Journal of neurophysiology,
G H Henry, and A R Harvey, and J S Lund
December 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G H Henry, and A R Harvey, and J S Lund
January 1986, Experimental brain research,
G H Henry, and A R Harvey, and J S Lund
March 1986, The Journal of comparative neurology,
G H Henry, and A R Harvey, and J S Lund
June 1982, Brain research,
G H Henry, and A R Harvey, and J S Lund
October 1991, The European journal of neuroscience,
G H Henry, and A R Harvey, and J S Lund
May 1980, The Journal of physiology,
G H Henry, and A R Harvey, and J S Lund
April 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G H Henry, and A R Harvey, and J S Lund
January 1982, Experimental brain research,
Copied contents to your clipboard!