Effect of glucocorticoids on the oxidative desaturation of fatty acids by rat liver microsomes. 1979

I N de Gómez Dumm, and M J de Alaniz, and R R Brenner

The effect of glucocorticoids on the oxidative desaturation of fatty acids by liver microsomal preparations of rats has been studied. Hydrocortisone produced a significant decrease in the conversion of [1-14C]linoleic acid to gamma-linolenic acid and [1-14C]eicosa-8, 11, 14-trienoic acid to arachidonic acid. Triamcinolone and dexamethasaone were more active than hydrocortisone in depressing delta 6 and delta 5 fatty acid desaturating activity in liver microsomes. The glucocorticoids evoked a maximal response approximately 24 hr after admission. Palmitic acid conversion to palmitoleic acid showed no statistically significant changes by any of the glucocorticoids. The mechanism of action of glucocorticoids is apparently different from other hyperglycemic hormones that produce similar effects.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005260 Female Females
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
July 1970, Lipids,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
January 1986, Reproduction, nutrition, developpement,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
April 1980, Biochimica et biophysica acta,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
November 1983, The British journal of nutrition,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
December 1993, Biochimica et biophysica acta,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
July 1967, Journal of biochemistry,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
January 1972, Acta biochimica et biophysica; Academiae Scientiarum Hungaricae,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
January 1971, Journal of biochemistry,
I N de Gómez Dumm, and M J de Alaniz, and R R Brenner
January 1986, Acta physiologica et pharmacologica latinoamericana : organo de la Asociacion Latinoamericana de Ciencias Fisiologicas y de la Asociacion Latinoamericana de Farmacologia,
Copied contents to your clipboard!